leetcode : 64 最小路径和 动态规划

64. 最小路径和

题目链接https://leetcode.cn/problems/minimum-path-sum/

题目描述

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

 [1,3,1]
 [1,5,1]
 [4,2,1]      

输出: 7

解释: 因为路径 1→3→1→1→1 的总和最小。

题目解法

从题目中我们可以知道,每次只能向下或者向右移动一步。

因此,第 i 行第 j 列的最小路径和与第 i-1 行第 j 列的最小路径和第i行第j-1列的最小路径和有关。

因此,我们可以用动态规划的方法来求解。

设 dp[i][j] 表示从左上角走到第 i 行第 j 列的最小路径和。

  1. 定义一个二维数组 dp,其中 dp[i][j] 表示从左上角走到第 i 行第 j 列的最小路径和。
  2. 则dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j],其中 grid[i][j] 表示网格中第 i 行第 j 列的元素。注意当i-1或者j-1越界时,说明无法从该点走到右下角,因此需要取最大值。
  3. 初始值 dp[0][0] = grid[0][0],其他 dp[i][j] = 0。
  4. 最后返回 dp[m-1][n-1],即为最小路径和。

代码实现

python版本:

python 复制代码
class Solution:
    def minPathSum(self, grid: List[List[int]]) -> int:
        if not grid or not grid[0]:
            return 0
        
        m, n = len(grid), len(grid[0])
        dp = grid
        for i in range(1, m):
            dp[i][0] = dp[i - 1][0] + grid[i][0]
        for j in range(1, n):
            dp[0][j] = dp[0][j - 1] + grid[0][j]
        for i in range(1, m):
            for j in range(1, n):
                dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
        
        return dp[m - 1][n - 1]

Go版本:

go 复制代码
func minPathSum(grid [][]int) int {
     m:=len(grid)
     n:=len(grid[0])

     res:=make([][]int,m)
     for i:=range res{
        res[i]=make([]int,n)
     }
     res[0][0]=grid[0][0]
     for i:=1;i<n;i++{
        res[0][i]=res[0][i-1]+grid[0][i]
     }
     for i:=1;i<m;i++{
        res[i][0]=res[i-1][0]+grid[i][0]
     }
     for i:=1;i<m;i++{
        for j:=1;j<n;j++{
            res[i][j]=min(res[i-1][j],res[i][j-1])+grid[i][j]
        }
     }
     return res[m-1][n-1]
}

C++版本:

cpp 复制代码
class Solution {
public:
    int minPathSum(vector<vector<int>>& dp) {
        int m=dp.size(),n=dp[0].size();
        auto res=vector<vector<int>> (m,vector<int>(n));
        res[0][0]=dp[0][0];
        for(int i=1;i<m;i++){
            res[i][0]=res[i-1][0]+dp[i][0];
        }
        for(int j=1;j<n;j++){
            res[0][j]=res[0][j-1]+dp[0][j];
        }
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                res[i][j]=min(res[i-1][j],res[i][j-1])+dp[i][j];
            }
        }
        return res[m-1][n-1];
    }
};
相关推荐
Dream_Snowar19 分钟前
速通Python 第四节——函数
开发语言·python·算法
Altair澳汰尔32 分钟前
数据分析和AI丨知识图谱,AI革命中数据集成和模型构建的关键推动者
人工智能·算法·机器学习·数据分析·知识图谱
A懿轩A1 小时前
C/C++ 数据结构与算法【栈和队列】 栈+队列详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·栈和队列
Python机器学习AI1 小时前
分类模型的预测概率解读:3D概率分布可视化的直观呈现
算法·机器学习·分类
kkflash32 小时前
提升专业素养的实用指南
学习·职场和发展
吕小明么2 小时前
OpenAI o3 “震撼” 发布后回归技术本身的审视与进一步思考
人工智能·深度学习·算法·aigc·agi
1 9 J2 小时前
数据结构 C/C++(实验五:图)
c语言·数据结构·c++·学习·算法
程序员shen1616112 小时前
抖音短视频saas矩阵源码系统开发所需掌握的技术
java·前端·数据库·python·算法
sinat_307021532 小时前
大数据政策文件——职业道德(山东省大数据职称考试)
大数据·职场和发展
汝即来归2 小时前
选择排序和冒泡排序;MySQL架构
数据结构·算法·排序算法