leetcode : 64 最小路径和 动态规划

64. 最小路径和

题目链接https://leetcode.cn/problems/minimum-path-sum/

题目描述

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

复制代码
 [1,3,1]
 [1,5,1]
 [4,2,1]      

输出: 7

解释: 因为路径 1→3→1→1→1 的总和最小。

题目解法

从题目中我们可以知道,每次只能向下或者向右移动一步。

因此,第 i 行第 j 列的最小路径和与第 i-1 行第 j 列的最小路径和第i行第j-1列的最小路径和有关。

因此,我们可以用动态规划的方法来求解。

设 dp[i][j] 表示从左上角走到第 i 行第 j 列的最小路径和。

  1. 定义一个二维数组 dp,其中 dp[i][j] 表示从左上角走到第 i 行第 j 列的最小路径和。
  2. 则dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j],其中 grid[i][j] 表示网格中第 i 行第 j 列的元素。注意当i-1或者j-1越界时,说明无法从该点走到右下角,因此需要取最大值。
  3. 初始值 dp[0][0] = grid[0][0],其他 dp[i][j] = 0。
  4. 最后返回 dp[m-1][n-1],即为最小路径和。

代码实现

python版本:

python 复制代码
class Solution:
    def minPathSum(self, grid: List[List[int]]) -> int:
        if not grid or not grid[0]:
            return 0
        
        m, n = len(grid), len(grid[0])
        dp = grid
        for i in range(1, m):
            dp[i][0] = dp[i - 1][0] + grid[i][0]
        for j in range(1, n):
            dp[0][j] = dp[0][j - 1] + grid[0][j]
        for i in range(1, m):
            for j in range(1, n):
                dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j]
        
        return dp[m - 1][n - 1]

Go版本:

go 复制代码
func minPathSum(grid [][]int) int {
     m:=len(grid)
     n:=len(grid[0])

     res:=make([][]int,m)
     for i:=range res{
        res[i]=make([]int,n)
     }
     res[0][0]=grid[0][0]
     for i:=1;i<n;i++{
        res[0][i]=res[0][i-1]+grid[0][i]
     }
     for i:=1;i<m;i++{
        res[i][0]=res[i-1][0]+grid[i][0]
     }
     for i:=1;i<m;i++{
        for j:=1;j<n;j++{
            res[i][j]=min(res[i-1][j],res[i][j-1])+grid[i][j]
        }
     }
     return res[m-1][n-1]
}

C++版本:

cpp 复制代码
class Solution {
public:
    int minPathSum(vector<vector<int>>& dp) {
        int m=dp.size(),n=dp[0].size();
        auto res=vector<vector<int>> (m,vector<int>(n));
        res[0][0]=dp[0][0];
        for(int i=1;i<m;i++){
            res[i][0]=res[i-1][0]+dp[i][0];
        }
        for(int j=1;j<n;j++){
            res[0][j]=res[0][j-1]+dp[0][j];
        }
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                res[i][j]=min(res[i-1][j],res[i][j-1])+dp[i][j];
            }
        }
        return res[m-1][n-1];
    }
};
相关推荐
点云SLAM26 分钟前
点云配准算法之-Voxelized GICP(VGICP)算法
算法·机器人·gpu·slam·点云配准·vgicp算法·gicp算法
资深web全栈开发2 小时前
LeetCode 3625. 统计梯形的数目 II
算法·leetcode·组合数学
橘颂TA2 小时前
【剑斩OFFER】算法的暴力美学——外观数列
算法·leetcode·职场和发展·结构与算法
Liangwei Lin2 小时前
洛谷 P1434 [SHOI2002] 滑雪
算法
c#上位机2 小时前
halcon图像增强之自动灰度拉伸
图像处理·算法·c#·halcon·图像增强
rit84324992 小时前
压缩感知信号恢复算法:OMP与CoSaMP对比分析
数据库·人工智能·算法
天才测试猿2 小时前
Postman中变量的使用详解
自动化测试·软件测试·python·测试工具·职场和发展·接口测试·postman
Pluchon3 小时前
硅基计划4.0 算法 FloodFill算法
java·算法·leetcode·决策树·逻辑回归·深度优先·图搜索算法
菜鸟233号3 小时前
力扣347. 前k个高频元素 java实现
算法
Xの哲學4 小时前
Linux设备管理:从内核驱动到用户空间的完整架构解析
linux·服务器·算法·架构·边缘计算