pytorch torch.topk函数介绍

在 PyTorch 中,torch.topk函数用于在输入张量中找到最大的k个值及其索引。

一、函数语法

torch.topk(input, k, dim=None, largest=True, sorted=True, out=None)

  • input:输入张量。
  • k:要返回的最大或最小元素的数量。
  • dim(可选):要进行操作的维度。如果为None,则在扁平的输入张量上进行操作。
  • largest(可选):如果为True,则返回最大的k个值;如果为False,则返回最小的k个值。
  • sorted(可选):如果为True,则返回的k个值将按降序(如果largest=True)或升序(如果largest=False)排列;如果为False,则返回的k个值的顺序是未定义的。
  • out(可选):输出张量,可以是一个已存在的张量,用于存储结果。

二、返回值

该函数返回一个包含两个张量的元组:

  1. 第一个张量是包含最大或最小的k个值的张量。
  2. 第二个张量是包含这些值在输入张量中的索引的张量。

三、使用示例

复制代码
import torch

# 创建一个二维张量
tensor = torch.tensor([[4, 2, 3], [1, 5, 6]])

# 找到每行中的最大的两个值及其索引
values, indices = torch.topk(tensor, k=2, dim=1, largest=True)
print("最大的两个值:", values)
print("对应的索引:", indices)

# 找到每列中的最小的两个值及其索引
values, indices = torch.topk(tensor, k=2, dim=0, largest=False)
print("最小的两个值:", values)
print("对应的索引:", indices)

在上述示例中,首先创建了一个二维张量。然后,分别在行维度和列维度上使用torch.topk函数找到最大的两个值及其索引和最小的两个值及其索引,并打印出结果。

相关推荐
SmartBrain41 分钟前
DeerFlow 实践:华为IPD流程的评审智能体设计
人工智能·语言模型·架构
l1t2 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华3 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu4 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师5 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
酷飞飞5 小时前
Python网络与多任务编程:TCP/UDP实战指南
网络·python·tcp/ip
cxr8286 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡6 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
数字化顾问6 小时前
Python:OpenCV 教程——从传统视觉到深度学习:YOLOv8 与 OpenCV DNN 模块协同实现工业缺陷检测
python
幂简集成7 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发