【路径规划】在二维环境中快速探索随机树和路径规划的示例

摘要

本文介绍了快速探索随机树(Rapidly-exploring Random Tree, RRT)算法在二维环境中的路径规划应用。RRT是一种随机采样算法,能够快速构建从起点到目标点的路径,特别适用于复杂环境中的机器人路径规划。通过在随机方向上扩展树结构,RRT算法能够高效避开障碍物并找到一条可行路径。

理论

RRT算法通过不断随机采样空间中的节点,并尝试将当前树扩展到这些节点,逐步构建一条从起点到目标点的路径。其关键步骤包括:

  1. 随机采样:在环境中随机采样一个点,作为树扩展的方向。

  2. 树扩展:尝试从当前树的一个节点向采样点扩展,生成一个新节点。

  3. 避障检测:检查新节点是否与障碍物发生碰撞,如果发生则放弃该节点。

  4. 路径生成:不断重复上述步骤,直到树包含了目标点,从而生成一条可行路径。

实验结果

实验使用RRT算法在二维环境中进行路径规划测试,结果显示算法能够快速生成路径并有效避开环境中的障碍物。以下是实验的主要发现:

  • 路径生成速度:RRT能够在较短时间内生成路径,适合实时应用。

  • 避障性能:算法能够在复杂障碍环境中找到可行路径,但生成的路径可能不够平滑。

  • 优化潜力:通过对路径进行后续优化处理(如RRT*),可以进一步改善路径的平滑性和总长度。

部分代码

复制代码
% Define map and parameters
mapSize = [0, 50, 0, 50]; % Map size [xmin, xmax, ymin, ymax]
startPos = [5, 5]; % Start position
goalPos = [45, 45]; % Goal position
maxStep = 2; % Maximum step size

% Initialize RRT
nodes = startPos; % Start node
edges = []; % Edge list

% Main RRT loop
while norm(nodes(end,:) - goalPos) > 1
    % Random sampling
    randPoint = [rand * (mapSize(2) - mapSize(1)), rand * (mapSize(4) - mapSize(3))];
    
    % Find nearest node
    [~, nearestIdx] = min(vecnorm(nodes - randPoint, 2, 2));
    nearestNode = nodes(nearestIdx, :);
    
    % Extend towards the random point
    direction = (randPoint - nearestNode) / norm(randPoint - nearestNode);
    newNode = nearestNode + maxStep * direction;
    
    % Collision check (assume no obstacles for simplicity)
    if newNode(1) >= mapSize(1) && newNode(1) <= mapSize(2) && ...
       newNode(2) >= mapSize(3) && newNode(2) <= mapSize(4)
        nodes = [nodes; newNode];
        edges = [edges; nearestIdx, size(nodes, 1)];
    end
    
    % Plot current state
    plot(nodes(:,1), nodes(:,2), 'bo'); % Plot nodes
    hold on;
    plot([nodes(edges(:,1),1), nodes(edges(:,2),1)]', ...
         [nodes(edges(:,1),2), nodes(edges(:,2),2)]', 'k-'); % Plot edges
    plot(goalPos(1), goalPos(2), 'ro', 'MarkerFaceColor', 'r'); % Plot goal
    pause(0.1);
end

% Final path plotting
plot([nodes(end,1), goalPos(1)], [nodes(end,2), goalPos(2)], 'r-', 'LineWidth', 2);
title('2D RRT Path Planning');
xlabel('X');
ylabel('Y');
grid on;

参考文献

  1. LaValle, S. M. (1998). Rapidly-Exploring Random Trees: A New Tool for Path Planning. Technical Report, Iowa State University.

  2. Karaman, S., & Frazzoli, E. (2010). Incremental Sampling-Based Algorithms for Optimal Motion Planning. Robotics: Science and Systems VI.

  3. Liu, J. (2024). Algorithms for Randomized Path Planning in Complex Environments. Springer.

相关推荐
CoovallyAIHub12 小时前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
NAGNIP13 小时前
Serverless 架构下的大模型框架落地实践
算法·架构
moonlifesudo13 小时前
半开区间和开区间的两个二分模版
算法
moonlifesudo13 小时前
300:最长递增子序列
算法
CoovallyAIHub18 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub19 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
聚客AI2 天前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v2 天前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工2 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农2 天前
【React用到的一些算法】游标和栈
算法·react.js