【路径规划】在二维环境中快速探索随机树和路径规划的示例

摘要

本文介绍了快速探索随机树(Rapidly-exploring Random Tree, RRT)算法在二维环境中的路径规划应用。RRT是一种随机采样算法,能够快速构建从起点到目标点的路径,特别适用于复杂环境中的机器人路径规划。通过在随机方向上扩展树结构,RRT算法能够高效避开障碍物并找到一条可行路径。

理论

RRT算法通过不断随机采样空间中的节点,并尝试将当前树扩展到这些节点,逐步构建一条从起点到目标点的路径。其关键步骤包括:

  1. 随机采样:在环境中随机采样一个点,作为树扩展的方向。

  2. 树扩展:尝试从当前树的一个节点向采样点扩展,生成一个新节点。

  3. 避障检测:检查新节点是否与障碍物发生碰撞,如果发生则放弃该节点。

  4. 路径生成:不断重复上述步骤,直到树包含了目标点,从而生成一条可行路径。

实验结果

实验使用RRT算法在二维环境中进行路径规划测试,结果显示算法能够快速生成路径并有效避开环境中的障碍物。以下是实验的主要发现:

  • 路径生成速度:RRT能够在较短时间内生成路径,适合实时应用。

  • 避障性能:算法能够在复杂障碍环境中找到可行路径,但生成的路径可能不够平滑。

  • 优化潜力:通过对路径进行后续优化处理(如RRT*),可以进一步改善路径的平滑性和总长度。

部分代码

复制代码
% Define map and parameters
mapSize = [0, 50, 0, 50]; % Map size [xmin, xmax, ymin, ymax]
startPos = [5, 5]; % Start position
goalPos = [45, 45]; % Goal position
maxStep = 2; % Maximum step size

% Initialize RRT
nodes = startPos; % Start node
edges = []; % Edge list

% Main RRT loop
while norm(nodes(end,:) - goalPos) > 1
    % Random sampling
    randPoint = [rand * (mapSize(2) - mapSize(1)), rand * (mapSize(4) - mapSize(3))];
    
    % Find nearest node
    [~, nearestIdx] = min(vecnorm(nodes - randPoint, 2, 2));
    nearestNode = nodes(nearestIdx, :);
    
    % Extend towards the random point
    direction = (randPoint - nearestNode) / norm(randPoint - nearestNode);
    newNode = nearestNode + maxStep * direction;
    
    % Collision check (assume no obstacles for simplicity)
    if newNode(1) >= mapSize(1) && newNode(1) <= mapSize(2) && ...
       newNode(2) >= mapSize(3) && newNode(2) <= mapSize(4)
        nodes = [nodes; newNode];
        edges = [edges; nearestIdx, size(nodes, 1)];
    end
    
    % Plot current state
    plot(nodes(:,1), nodes(:,2), 'bo'); % Plot nodes
    hold on;
    plot([nodes(edges(:,1),1), nodes(edges(:,2),1)]', ...
         [nodes(edges(:,1),2), nodes(edges(:,2),2)]', 'k-'); % Plot edges
    plot(goalPos(1), goalPos(2), 'ro', 'MarkerFaceColor', 'r'); % Plot goal
    pause(0.1);
end

% Final path plotting
plot([nodes(end,1), goalPos(1)], [nodes(end,2), goalPos(2)], 'r-', 'LineWidth', 2);
title('2D RRT Path Planning');
xlabel('X');
ylabel('Y');
grid on;

参考文献

  1. LaValle, S. M. (1998). Rapidly-Exploring Random Trees: A New Tool for Path Planning. Technical Report, Iowa State University.

  2. Karaman, S., & Frazzoli, E. (2010). Incremental Sampling-Based Algorithms for Optimal Motion Planning. Robotics: Science and Systems VI.

  3. Liu, J. (2024). Algorithms for Randomized Path Planning in Complex Environments. Springer.

相关推荐
石头wang几秒前
jmeter java.lang.OutOfMemoryError: Java heap space 修改内存大小,指定自己的JDK
java·开发语言·jmeter
LawrenceLan6 分钟前
Flutter 零基础入门(十五):继承、多态与面向对象三大特性
开发语言·前端·flutter·dart
咋吃都不胖lyh10 分钟前
Haversine 距离算法详解(零基础友好版)
线性代数·算法·机器学习
FPGA小c鸡14 分钟前
FPGA通信基带算法完全指南:从理论到实战的DSP加速方案
算法·fpga开发
zh_xuan15 分钟前
kotlin对象表达式
开发语言·kotlin
froginwe1123 分钟前
ECharts 旭日图:全面解析与应用指南
开发语言
yaoxin52112326 分钟前
292. Java Stream API - 使用构建器模式创建 Stream
java·开发语言
@Aurora.29 分钟前
优选算法【专题三:二分查找算法】
算法
soldierluo30 分钟前
向量与向量数据
人工智能·算法·机器学习
CoderCodingNo33 分钟前
【GESP】C++六级考试大纲知识点梳理, (2) 哈夫曼树、完全二叉树与二叉排序树
开发语言·c++