【路径规划】在二维环境中快速探索随机树和路径规划的示例

摘要

本文介绍了快速探索随机树(Rapidly-exploring Random Tree, RRT)算法在二维环境中的路径规划应用。RRT是一种随机采样算法,能够快速构建从起点到目标点的路径,特别适用于复杂环境中的机器人路径规划。通过在随机方向上扩展树结构,RRT算法能够高效避开障碍物并找到一条可行路径。

理论

RRT算法通过不断随机采样空间中的节点,并尝试将当前树扩展到这些节点,逐步构建一条从起点到目标点的路径。其关键步骤包括:

  1. 随机采样:在环境中随机采样一个点,作为树扩展的方向。

  2. 树扩展:尝试从当前树的一个节点向采样点扩展,生成一个新节点。

  3. 避障检测:检查新节点是否与障碍物发生碰撞,如果发生则放弃该节点。

  4. 路径生成:不断重复上述步骤,直到树包含了目标点,从而生成一条可行路径。

实验结果

实验使用RRT算法在二维环境中进行路径规划测试,结果显示算法能够快速生成路径并有效避开环境中的障碍物。以下是实验的主要发现:

  • 路径生成速度:RRT能够在较短时间内生成路径,适合实时应用。

  • 避障性能:算法能够在复杂障碍环境中找到可行路径,但生成的路径可能不够平滑。

  • 优化潜力:通过对路径进行后续优化处理(如RRT*),可以进一步改善路径的平滑性和总长度。

部分代码

复制代码
% Define map and parameters
mapSize = [0, 50, 0, 50]; % Map size [xmin, xmax, ymin, ymax]
startPos = [5, 5]; % Start position
goalPos = [45, 45]; % Goal position
maxStep = 2; % Maximum step size

% Initialize RRT
nodes = startPos; % Start node
edges = []; % Edge list

% Main RRT loop
while norm(nodes(end,:) - goalPos) > 1
    % Random sampling
    randPoint = [rand * (mapSize(2) - mapSize(1)), rand * (mapSize(4) - mapSize(3))];
    
    % Find nearest node
    [~, nearestIdx] = min(vecnorm(nodes - randPoint, 2, 2));
    nearestNode = nodes(nearestIdx, :);
    
    % Extend towards the random point
    direction = (randPoint - nearestNode) / norm(randPoint - nearestNode);
    newNode = nearestNode + maxStep * direction;
    
    % Collision check (assume no obstacles for simplicity)
    if newNode(1) >= mapSize(1) && newNode(1) <= mapSize(2) && ...
       newNode(2) >= mapSize(3) && newNode(2) <= mapSize(4)
        nodes = [nodes; newNode];
        edges = [edges; nearestIdx, size(nodes, 1)];
    end
    
    % Plot current state
    plot(nodes(:,1), nodes(:,2), 'bo'); % Plot nodes
    hold on;
    plot([nodes(edges(:,1),1), nodes(edges(:,2),1)]', ...
         [nodes(edges(:,1),2), nodes(edges(:,2),2)]', 'k-'); % Plot edges
    plot(goalPos(1), goalPos(2), 'ro', 'MarkerFaceColor', 'r'); % Plot goal
    pause(0.1);
end

% Final path plotting
plot([nodes(end,1), goalPos(1)], [nodes(end,2), goalPos(2)], 'r-', 'LineWidth', 2);
title('2D RRT Path Planning');
xlabel('X');
ylabel('Y');
grid on;

参考文献

  1. LaValle, S. M. (1998). Rapidly-Exploring Random Trees: A New Tool for Path Planning. Technical Report, Iowa State University.

  2. Karaman, S., & Frazzoli, E. (2010). Incremental Sampling-Based Algorithms for Optimal Motion Planning. Robotics: Science and Systems VI.

  3. Liu, J. (2024). Algorithms for Randomized Path Planning in Complex Environments. Springer.

相关推荐
算法_小学生4 分钟前
LeetCode 75. 颜色分类(荷兰国旗问题)
算法·leetcode·职场和发展
运器1237 分钟前
【一起来学AI大模型】算法核心:数组/哈希表/树/排序/动态规划(LeetCode精练)
开发语言·人工智能·python·算法·ai·散列表·ai编程
算法_小学生7 分钟前
LeetCode 287. 寻找重复数(不修改数组 + O(1) 空间)
数据结构·算法·leetcode
岁忧8 分钟前
(LeetCode 每日一题) 1865. 找出和为指定值的下标对 (哈希表)
java·c++·算法·leetcode·go·散列表
alphaTao8 分钟前
LeetCode 每日一题 2025/6/30-2025/7/6
算法·leetcode·职场和发展
ゞ 正在缓冲99%…8 分钟前
leetcode67.二进制求和
算法·leetcode·位运算
YuTaoShao11 分钟前
【LeetCode 热题 100】240. 搜索二维矩阵 II——排除法
java·算法·leetcode
whoarethenext23 分钟前
使用 C++ 实现 MFCC 特征提取与说话人识别系统
开发语言·c++·语音识别·mfcc
张德锋27 分钟前
Pytorch实现天气识别
机器学习
ITfeib32 分钟前
Flutter
开发语言·javascript·flutter