在使用parallelStream进行处理list时,如不指定线程池,默认的并行度采用cpu核数进行并行,这里采用ForJoinPool来控制,但循环中使用了redis获取key时,出现失控。具体上代码。
java
@RunWith(SpringRunner.class)
@SpringBootTest(classes = Application.class)
@Slf4j
public class ForkJoinPoolTest {
@Resource
RedisUtils redisUtils;
@Test
public void test() {
ForkJoinPool forkJoinPool = new ForkJoinPool(2);
List<Integer> fileList = new ArrayList<>();
for (int i = 1; i < 100; i++) {
fileList.add(i);
}
List<String> result = forkJoinPool.submit(() -> detail(fileList)).join();
}
public List<String> detail(List<Integer> fileList){
return fileList.parallelStream().map(path-> {
String ocrJson = (String) redisUtils.get("ocr:");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
log.info("第"+path+"张");
return "第"+path+"张";
}).collect(Collectors.toList());
}
}
打印结果:
在这里我已经用ForkJoinPool forkJoinPool = new ForkJoinPool(2);来指定了parallelStream的线程数,但是这里并没有控制住,于是找原因定位到了redis获取key这行代码,将该代码注释后,就可控制parallelStream的并行度。上代码:
java
//String ocrJson = (String) redisUtils.get("ocr:");
String ocrJson = "";
这时控制台的打印就为:
在这里,redis采用的是lettuce客户端,经排查可能是因为lettuce是异步客户端,而影响了parallelStream的并行度,具体是因为什么原因导致,待排查。