python 统计文件夹中图片尺寸

python Code

python 复制代码
import os
import matplotlib.pyplot as plt
import numpy as np
import copy
import shutil
import cv2
import matplotlib.pyplot as plt
def cv_imread(file_path):
    #imdedcode读取的是RGB图像
    cv_img = cv2.imdecode(np.fromfile(file_path,dtype=np.uint8),-1)
    return cv_img


def statistic_w_h(images_names_path):
    heights_ = []
    widths_ = []
    for img_name in images_names_path:
        # print("images_names_path", images_names_path)
        if img_name[-4:] != "json":
           # print("img_name", img_name)
            img = cv_imread(img_name)
            # cv2.imshow("img",img)
            # cv2.waitKey(0)
            # print(img.shape)
            shape0 = img.shape[0]
            shape1 = img.shape[1]
            img_height = shape0
            img_width = shape1
            if img_width > img_height:
                img_height = shape1
                img_width = shape0
            heights_.append(img_height)
            widths_.append(img_width)
    return heights_, widths_


def get_img_name(src_path_root_):
    image_paths = os.listdir(src_path_root_)
    print("-------------image_paths---------------", src_path_root_)
    images_names_all = []
    for image_path in image_paths:
        images_names = []
        abs_image_path = src_path_root_+'/'+image_path
        # print("abs_image_path", abs_image_path)
        images_name_ = os.listdir(abs_image_path)

        print("abs_image_path:", abs_image_path)
        print("Number", len(images_name_))
        # print("images_name_", images_name_)
        for img_name in images_name_:
            img_name = abs_image_path+'/'+img_name
            # print(img_name)
            images_names.append(img_name)
        images_names_all += images_names
    return images_names_all


def get_image_name_list(paths_):
    names = []
    print("get_image_name_list:", paths_)
    for path in paths_:
        names += get_img_name(path)
    return names


if __name__ == "__main__":
    path_root_root = "E:/L208_part/"
    component_type = 'R'
    statistic_path_list = []
    root_paths = os.listdir(path_root_root)
    print(root_paths)
    for root_path in root_paths:
        abs_statistic_path = path_root_root+root_path+'/'+component_type
        statistic_path_list.append(abs_statistic_path)
    print(statistic_path_list)
    images=get_image_name_list(statistic_path_list)
    print("len of image:", len(images))
    heights, widths = statistic_w_h(images)
    plt.hist(heights, bins=10, color='skyblue', alpha=0.5,label='heights')
    plt.hist(widths,  bins=10, color='green', alpha=0.5,label='widths')
    plt.title('strip class components -R ')
    plt.xlabel('Pixels')
    plt.ylabel('Frequency')
    plt.legend()
    plt.show()

2 目录结构

相关推荐
coberup2 分钟前
django Forbidden (403)错误解决方法
python·django·403错误
龙哥说跨境33 分钟前
如何利用指纹浏览器爬虫绕过Cloudflare的防护?
服务器·网络·python·网络爬虫
小白学大数据1 小时前
正则表达式在Kotlin中的应用:提取图片链接
开发语言·python·selenium·正则表达式·kotlin
flashman9111 小时前
python在word中插入图片
python·microsoft·自动化·word
菜鸟的人工智能之路1 小时前
桑基图在医学数据分析中的更复杂应用示例
python·数据分析·健康医疗
懒大王爱吃狼2 小时前
Python教程:python枚举类定义和使用
开发语言·前端·javascript·python·python基础·python编程·python书籍
秃头佛爷3 小时前
Python学习大纲总结及注意事项
开发语言·python·学习
浮生如梦_4 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover4 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
API快乐传递者5 小时前
淘宝反爬虫机制的主要手段有哪些?
爬虫·python