Kafka 分布式消息系统详细介绍

Kafka 分布式消息系统

  • [一、Kafka 概述](#一、Kafka 概述)
    • [1.1 Kafka 定义](#1.1 Kafka 定义)
    • [1.2 Kafka 设计目标](#1.2 Kafka 设计目标)
    • [1.3 Kafka 特点](#1.3 Kafka 特点)
  • [二、Kafka 架构设计](#二、Kafka 架构设计)
    • [2.1 基本架构](#2.1 基本架构)
    • [2.2 Topic 和 Partition](#2.2 Topic 和 Partition)
    • [2.3 消费者和消费者组](#2.3 消费者和消费者组)
    • [2.4 Replica 副本](#2.4 Replica 副本)
  • [三、Kafka 分布式集群搭建](#三、Kafka 分布式集群搭建)
    • [3.1 下载解压](#3.1 下载解压)
      • [3.1.1 上传解压](#3.1.1 上传解压)
    • [3.2 修改 Kafka 配置文件](#3.2 修改 Kafka 配置文件)
      • [3.2.1 修改zookeeper.properties配置文件](#3.2.1 修改zookeeper.properties配置文件)
      • [3.2.2 修改consumer.properties配置文件](#3.2.2 修改consumer.properties配置文件)
      • [3.2.3 修改producer.properties配置](#3.2.3 修改producer.properties配置)
      • [3.2.4 修改server.properties配置](#3.2.4 修改server.properties配置)
    • [3.3 修改 Kafka 配置同步到其他节点](#3.3 修改 Kafka 配置同步到其他节点)
    • [3.4 修改 Kafka Server 编号](#3.4 修改 Kafka Server 编号)
    • [3.5 启动Kafka 集群](#3.5 启动Kafka 集群)
    • [3.5.1 启动Zookeeper集群](#3.5.1 启动Zookeeper集群)
    • [3.5.1 启动 Kafka 集群](#3.5.1 启动 Kafka 集群)
    • [3.6 Kafka 集群测试](#3.6 Kafka 集群测试)
      • [3.6.1 创建Topic](#3.6.1 创建Topic)
      • [3.6.2 查看Topic列表](#3.6.2 查看Topic列表)
      • [3.6.2 查看Topic详情](#3.6.2 查看Topic详情)
      • [3.6.3 消费者消费Topic](#3.6.3 消费者消费Topic)
      • [3.6.4 生产者向Topic发送消息](#3.6.4 生产者向Topic发送消息)
  • [四、案例实践:Flume 与 Kafka 集成开发](#四、案例实践:Flume 与 Kafka 集成开发)
    • [4.1 配置Flume聚合服务](#4.1 配置Flume聚合服务)
    • [4.2 Flume与Kafka集成测试](#4.2 Flume与Kafka集成测试)
      • [4.2.1 启动Flume聚合服务](#4.2.1 启动Flume聚合服务)
      • [4.2.2 启动 Flume 采集服务](#4.2.2 启动 Flume 采集服务)
      • [4.2.3 启动 Kafka 消费者服务](#4.2.3 启动 Kafka 消费者服务)
      • [4.2.4 准备测试数据](#4.2.4 准备测试数据)

一、Kafka 概述

1.1 Kafka 定义

Kafka是由LinkedIn开发的一个分布式的消息系统,使用Scala语言编写,它以可水平扩展和高吞吐率的特点而被广泛使用。目前越来越多的开源分布式处理系统,如Spark、Flink都支持与Kafka集成。比如一个实时日志分析系统,Flume采集数据通过接口传输到Kafka集群(多台Kafka服务器组成的集群称为Kafka集群),然后Flink或者Spark直接调用接口从Kafka实时读取数据并进行统计分析。

1.2 Kafka 设计目标

  • 以时间复杂度为O(1)的方式提供消息持久化(Kafka)能力,即使对TB级以上数据也能保证常数时间的访问性能。持久化是将程序数据在持久状态和瞬时状态间转换的机制。通俗地讲,就是瞬时数据(比如内存中的数据是不能永久保存的)持久化为持久数据(比如持久化至磁盘中能够长久保存)。
  • 保证高吞吐率,即使在非常廉价的商用机器上,也能做到单机支持每秒100,000条消息的传输速度。
  • 支持Kafka Server间的消息分区,以及分布式消息消费,同时保证每个Partition内的消息顺序传输。
  • 支持离线数据处理和实时数据处理。

1.3 Kafka 特点

  • 高吞吐量、低延迟:Kafka 每秒可以处理几十万条消息,它的延迟最低只有几毫秒。
  • 可扩展性:Kafka集群同Hadoop集群一样,支持横向扩展。
  • 持久性、可靠性:Kafka消息可以被持久化到本地磁盘,并且支持Partition数据备份,防止数据丢失。
  • 容错性:允许Kafka集群中的节点失败,如果Partition(分区)副本数量为n,则最多允许n-1个节点失败。
  • 高并发:单节点支持上千个客户端同时读写,每秒钟有上百MB的吞吐量,基本上达到了网卡的极限。

二、Kafka 架构设计

2.1 基本架构

生产者将数据写入 Kafka,消费者从 Kafka 中读取数据,Zookeeper 提供协调服务,如生产者和消费者的负载均衡

2.2 Topic 和 Partition

生产者将数据写入主题,实际写入分区(轮询,随机等),一个分区只能对应一个消费者组中的一个消费组,而一个消费者可以对应多个分区。

2.3 消费者和消费者组

一个分区只能对应一个消费者组中的一个消费者,消费者组相互独立,一个分区可以对应多个不同消费者组中的消费者,一个消费者可以对应多个分区。

2.4 Replica 副本

  • Leader:每个Replica集合中的分区都会选出一个唯一的Leader,所有的读写请求都由Leader处理,其他副本从Leader处把数据更新同步到本地。

  • Follower:是副本中的另外一个角色,可以从Leader中复制数据。

  • ISR:Kafka集群通过数据冗余来实现容错。每个分区都会有一个Leader,以及零个或多个Follower,Leader加上Follower总和就是副本因子。Follower与Leader之间的数据同步是通过Follower主动拉取Leader上面的消息来实现的。所有的Follower不可能与Leader中的数据一直保持同步,那么与Leader数据保持同步的这些Follower称为IS(In Sync Replica)。Zookeeper维护着每个分区的Leader信息和ISR信息。

三、Kafka 分布式集群搭建

3.1 下载解压

下载地址https://archive.apache.org/dist/kafka/

此处使用的下载的版本式:kafka_2.12_2.8.2.tgz

3.1.1 上传解压

javascript 复制代码
[root@hadoop1 local]# tar -zxvf kafka_2.12-2.8.2.tgz 

添加软连接

javascript 复制代码
[root@hadoop1 local]# ln -s kafka_2.12-2.8.2 kafka

3.2 修改 Kafka 配置文件

3.2.1 修改zookeeper.properties配置文件

进入Kafka的config目录下,修改zookeeper. properties配置文件,具体内容如下:

javascript 复制代码
[root@hadoop1 local]# vim /usr/local/kafka/config/zookeeper.properties 

修改如下内容:

javascript 复制代码
dataDir=/usr/local/data/zookeeper/zkdata
clientPort=2181

3.2.2 修改consumer.properties配置文件

进入Kafka的config目录下,修改consumer. properties配置文件,具体内容如下:

javascript 复制代码
[root@hadoop1 local]# vim /usr/local/kafka/config/consumer.properties

修改如下内容:

javascript 复制代码
bootstrap.servers=hadoop1:9092,hadoop2:9092,hadoop3:9092

备注:hadoop1:9092,hadoop2:9092,hadoop3:9092 为集群hadoop地址

3.2.3 修改producer.properties配置

进入Kafka的config目录中,修改producer. properties配置文件,具体内容如下:

javascript 复制代码
[root@hadoop1 local]# vim /usr/local/kafka/config/producer.properties 

修改内容如下:

javascript 复制代码
bootstrap.servers=hadoop1:9092,hadoop2:9092,hadoop3:9092

3.2.4 修改server.properties配置

进入Kafka的config目录下,修改server. properties配置文件,具体内容如下:

javascript 复制代码
[root@hadoop1 local]# vim /usr/local/kafka/config/server.properties 

修改内容如下:

javascript 复制代码
zookeeper.connect=hadoop1:2181,hadoop2:2181,hadoop3:2181

3.3 修改 Kafka 配置同步到其他节点

将hadoop1节点中配置好的Kafka安装目录分发给hadoop2和hadoop3节点,具体操作如下所示:

javascript 复制代码
[root@hadoop1 local]# deploy.sh /usr/local/kafka_2.12-2.8.2 /usr/local/ slave

给从节点创建软链接:

javascript 复制代码
[root@hadoop1 local]# runRemoteCmd.sh "ln -s /usr/local/kafka_2.12-2.8.2 /usr/local/kafka" slave

备注:deploy.sh 是集群推送脚本,可以参考《ZooKeeper 集群的详细部署》

3.4 修改 Kafka Server 编号

登录hadoop1、hadoop2和hadoop3节点,分别进入Kafka的config目录下,修改server.properties配置文件中的broker.id项,具体操作如下所示:

[root@hadoop1 local]# vim /usr/local/kafka/config/server.properties

#标识hadoop1节点

broker.id=1

[root@hadoop2 local]# vim /usr/local/kafka/config/server.properties

#标识hadoop2节点

broker.id=2

[root@hadoop3 local]# vim /usr/local/kafka/config/server.properties

#标识hadoop3节点

broker.id=3

3.5 启动Kafka 集群

Zookeeper管理着Kafka Broker集群,同时Kafka将元数据信息保存在Zookeeper中,说明Kafka集群依赖Zookeeper提供协调服务,所以需要先启动Zookeeper集群,然后再启动Kafka集群。

3.5.1 启动Zookeeper集群

在集群各个节点中进入Zookeeper安装目录,使用如下命令启动Zookeeper集群。

javascript 复制代码
# 启动集群
[root@hadoop1 local]# runRemoteCmd.sh "/usr/local/zookeeper/bin/zkServer.sh start" all
# 查看zookeeper 集群状态
[root@hadoop1 local]# runRemoteCmd.sh "/usr/local/zookeeper/bin/zkServer.sh status" all

3.5.1 启动 Kafka 集群

在集群各个节点中进入Kafka安装目录,使用如下命令启动Kafka集群。

javascript 复制代码
[root@hadoop1 local]# runRemoteCmd.sh "/usr/local/kafka/bin/kafka-server-start.sh -daemon /usr/local/kafka/config/server.properties" all

显示 Kafka 已经启动。

3.6 Kafka 集群测试

Kafka自带有很多种Shell脚本供用户使用,包含生产消息、消费消息、Topic管理等功能。接下来利用Kafka Shell脚本测试使用Kafka集群。

3.6.1 创建Topic

使用Kafka的bin目录下的kafka-topics.sh脚本,通过create命令创建名为test的Topic,具体操作如下所示。

javascript 复制代码
[root@hadoop1 local]# /usr/local/kafka/bin/kafka-topics.sh --zookeeper localhost:2181 --create --topic test --replication-factor 3 --partitions 3

上述命令中,--zookeeper 指定 Zookeeper 集群;--create 是创建 Topic 命令;--topic指定Topic名称;--replication-factor 指定副本数量;--partitions指定分区个数。

3.6.2 查看Topic列表

通过list命令可以查看Kafka 的Topic列表,具体操作如下所示。

javascript 复制代码
[root@hadoop1 kafka]# /usr/local/kafka/bin/kafka-topics.sh --zookeeper hadoop1:2181  --list

3.6.2 查看Topic详情

通过describe命令查看Topic内部结构,具体操作如下所示。

javascript 复制代码
[root@hadoop1 kafka]# /usr/local/kafka/bin/kafka-topics.sh --zookeeper hadoop1:2181 --describe --topic test

3.6.3 消费者消费Topic

在hadoop1节点上,通过Kafka自带的kafka-console-consumer.sh脚本,开启消费者消费 test中的消息。

javascript 复制代码
[root@hadoop1 kafka]# /usr/local/kafka/bin/kafka-console-consumer.sh --bootstrap-server hadoop1:9092 --topic test

3.6.4 生产者向Topic发送消息

在hadoop1节点上,通过Kafka自带的kafka-console-producer.sh脚本启动生产者,然后向 test发送3条消息,具体操作如下所示。

javascript 复制代码
[root@hadoop1 logs]# /usr/local/kafka/bin/kafka-console-producer.sh --broker-list  hadoop1:9092 --topic test

生成者输入:

消费者展示:

四、案例实践:Flume 与 Kafka 集成开发

《Flume 日志采集系统》 的基础上进行 kafka 集成开发

4.1 配置Flume聚合服务

在 hadoop2 和 hadoop3 服务器配置分配配置 Flume 聚合服务

javascript 复制代码
[root@hadoop1 conf]# vim /usr/local/flume/conf/avro-file-selector-kafka.properties
[root@hadoop2 conf]# vim /usr/local/flume/conf/avro-file-selector-kafka.properties

分别写入如下内容并保存:

javascript 复制代码
#定义source、channel、sink的名称
agent1.sources = r1
agent1.channels = c1
agent1.sinks = k1
# 定义和配置一个avro Source
agent1.sources.r1.type = avro
agent1.sources.r1.channels = c1
agent1.sources.r1.bind = 0.0.0.0
agent1.sources.r1.port = 1234
# 定义和配置一个file channel
agent1.channels.c1.type = file
agent1.channels.c1.checkpointDir = /usr/local/data/flume/checkpointDir
agent1.channels.c1.dataDirs = /usr/local/data/flume/dataDirs
# 定义和配置一个kafka sink
agent1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
agent1.sinks.k1.topic = test
agent1.sinks.k1.brokerList = hadoop1:9092,hadoop2:9092,hadoop3:9092
agent1.sinks.k1.producer.acks = 1
agent1.sinks.k1.channel = c1

4.2 Flume与Kafka集成测试

4.2.1 启动Flume聚合服务

在 采集服务器 hadoop2 和 hadoop3 分别启动聚合服务

javascript 复制代码
[root@hadoop2 conf]# /usr/local/flume/bin/flume-ng agent -n agent1 -c conf -f /usr/local/flume/conf/avro-file-selector-kafka.properties -Dflume.root.logger=INFO,console

[root@hadoop3 local]# /usr/local/flume/bin/flume-ng agent -n agent1 -c conf -f /usr/local/flume/conf/avro-file-selector-kafka.properties -Dflume.root.logger=INFO,console

4.2.2 启动 Flume 采集服务

在 Hadoop1 启动 Flume 采集脚本:

javascript 复制代码
[root@hadoop1 conf]# /usr/local/flume/bin/flume-ng agent -n agent1 -c conf -f /usr/local/flume/conf/taildir-file-selector-avro.properties -Dflume.root.logger=INFO,console

正常启动 Flume 采集脚本

4.2.3 启动 Kafka 消费者服务

在 hadoop1 启动 Kafka 消费者服务脚本

javascript 复制代码
[root@hadoop1 data]# /usr/local/kafka/bin/kafka-console-consumer.sh --bootstrap-server hadoop1:9092 --topic test

4.2.4 准备测试数据

在 hadoop1 另开连接,执行如下脚本:

javascript 复制代码
[root@hadoop1 logs]# echo '00:00:100971413028304674[火炬传递路线时间]1 2www.olympic.cn/news/beijing/2008-03-19/1417291.html' >> /usr/local/data/flume/logs/sogou.log

输入三条测试数据

消费者打印三条测试数据:

至此,案例测试成功。

相关推荐
lzhlizihang1 小时前
Kafka一些常用的命令行操作【包含主题命令、生产者和消费者命令】
kafka
Hsu_kk2 小时前
Kafka 安装教程
大数据·分布式·kafka
苍老流年2 小时前
1. kafka分布式环境搭建
分布式·kafka
sj11637394032 小时前
Kafka参数了解
数据库·分布式·kafka
Hsu_kk2 小时前
Kafka Eagle 安装教程
分布式·kafka
CodingBrother2 小时前
Kafka 与 RabbitMQ 的联系
分布式·kafka·rabbitmq
pblh1232 小时前
2023_Spark_实验十五:SparkSQL进阶操作
大数据·分布式·spark
silver98863 小时前
分布式相关杂项
分布式
jerry6099 小时前
7天用Go从零实现分布式缓存GeeCache(改进)(未完待续)
分布式·缓存·golang
古人诚不我欺10 小时前
jmeter常用配置元件介绍总结之分布式压测
分布式·jmeter