YOLOv8 只检测人 只画框不要标签

参考了这个:YOLOv8只检测人(或其他一种或者多种类别)_yolov8只检测指定类别-CSDN博客

  1. 只检测人:predict的时候指定参数classes=[0]

  2. 只画框不要标签:plot的时候传入labels=False

  3. 标签中去掉置信度:result.plot(conf=False)

示例代码如下:

python 复制代码
#!/usr/bin/env python
import contextlib
from datetime import datetime
from pathlib import Path

# pip install opencv-python pillow ultralytics rich
import cv2
from ultralytics import YOLO  # type:ignore[import-untyped]

with contextlib.suppress(ImportError):
    from rich import print

model = YOLO("yolov8s.pt")
person_cls = 0  # 人员标签的类别ID
total = 200  # 总共截多少桢
interval = 20  # 每隔几桢推理一次
folder = Path(__file__).parent / "images"  # 未检测到人的图片存在这里
folder.mkdir(exist_ok=True)


cap = cv2.VideoCapture(0)  # 打开电脑摄像头
count = 0
while True:
    if not cap.isOpened():
        print(f"Failed to open video capture with {cap=}")
        break
    ok, frame = cap.read()
    if not ok:
        continue
    count += 1
    if count > total:
        print(f"Success to capture {total} frames~")
        break
    elif count % interval != 0:
        continue
    # 通过指定classes参数,限定要检测的类别
    # result = model(frame, classes=[person_cls], save=False, show=False, verbose=False)[0]
    result = model(frame, classes=[person_cls], save=False, verbose=False)[0]
    has_person = bool(result.summary())
    if has_person:
        print(f"{count=}, result: {result.verbose()}")
        result.show()
    else:
        file = folder / f"{count}.jpg"
        content = cv2.imencode(".jpg", result.plot())[1].tobytes()
        file.write_bytes(content)
        print(datetime.now(), f"{count=}, result: {has_person}, save to {file}")
cap.release()
print("✨ Done.")
相关推荐
Hcoco_me4 小时前
YOLO目标检测学习路线图
学习·yolo·目标检测
dotphoenix6 小时前
在wsl ubuntu下安装,训练,验证,导出,部署YOLO的完整例子
yolo
paopao_wu1 天前
目标检测YOLO[03]:推理入门
人工智能·yolo·目标检测
深度学习lover2 天前
<项目代码>yolo遥感航拍船舶识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·遥感船舶识别
Coovally AI模型快速验证2 天前
基于SimCLR的自监督 YOLO:YOLOv5/8也能在低标注场景目标检测性能飙升
人工智能·科技·yolo·目标检测·机器学习·计算机视觉
hans汉斯3 天前
基于改进YOLOv11n的无人机红外目标检测算法
大数据·数据库·人工智能·算法·yolo·目标检测·无人机
AI即插即用3 天前
即插即用系列 | 2024 SOTA LAM-YOLO : 无人机小目标检测模型
pytorch·深度学习·yolo·目标检测·计算机视觉·视觉检测·无人机
是店小二呀3 天前
openGauss进阶:使用DBeaver可视化管理与实战
开发语言·人工智能·yolo
paopao_wu3 天前
目标检测YOLO[02]:YOLOv8 环境安装-Ubuntu
yolo·目标检测·ubuntu
AutumnorLiuu3 天前
【红外小目标检测实战】Yolov11加入SPDConv,HDC,ART等模块
人工智能·yolo·目标检测