YOLOv8 只检测人 只画框不要标签

参考了这个:YOLOv8只检测人(或其他一种或者多种类别)_yolov8只检测指定类别-CSDN博客

  1. 只检测人:predict的时候指定参数classes=[0]

  2. 只画框不要标签:plot的时候传入labels=False

  3. 标签中去掉置信度:result.plot(conf=False)

示例代码如下:

python 复制代码
#!/usr/bin/env python
import contextlib
from datetime import datetime
from pathlib import Path

# pip install opencv-python pillow ultralytics rich
import cv2
from ultralytics import YOLO  # type:ignore[import-untyped]

with contextlib.suppress(ImportError):
    from rich import print

model = YOLO("yolov8s.pt")
person_cls = 0  # 人员标签的类别ID
total = 200  # 总共截多少桢
interval = 20  # 每隔几桢推理一次
folder = Path(__file__).parent / "images"  # 未检测到人的图片存在这里
folder.mkdir(exist_ok=True)


cap = cv2.VideoCapture(0)  # 打开电脑摄像头
count = 0
while True:
    if not cap.isOpened():
        print(f"Failed to open video capture with {cap=}")
        break
    ok, frame = cap.read()
    if not ok:
        continue
    count += 1
    if count > total:
        print(f"Success to capture {total} frames~")
        break
    elif count % interval != 0:
        continue
    # 通过指定classes参数,限定要检测的类别
    # result = model(frame, classes=[person_cls], save=False, show=False, verbose=False)[0]
    result = model(frame, classes=[person_cls], save=False, verbose=False)[0]
    has_person = bool(result.summary())
    if has_person:
        print(f"{count=}, result: {result.verbose()}")
        result.show()
    else:
        file = folder / f"{count}.jpg"
        content = cv2.imencode(".jpg", result.plot())[1].tobytes()
        file.write_bytes(content)
        print(datetime.now(), f"{count=}, result: {has_person}, save to {file}")
cap.release()
print("✨ Done.")
相关推荐
相识已是上上签3 小时前
YOLOv8模型pytorch格式转为onnx格式
人工智能·pytorch·yolo
Eric.Lee20216 小时前
数据集-目标检测系列- 装甲车 检测数据集 armored_vehicles >> DataBall
python·算法·yolo·目标检测·装甲车检测
Eric.Lee20216 小时前
数据集-目标检测系列- 牵牛花 检测数据集 morning_glory >> DataBall
人工智能·python·yolo·目标检测·计算机视觉·牵牛花检测
菜菜子爱学习20 小时前
目标检测实施与部署(YOLOv8+树莓派)
人工智能·yolo·目标检测
学不会lostfound21 小时前
三、计算机视觉_06YOLO基础知识
人工智能·深度学习·yolo·计算机视觉·ultralytic
Deepcong1 天前
yolov11的目标检测理论、tensorrt实现推理
人工智能·yolo·目标检测
Python图像识别-11 天前
基于yolov8、yolov5的智能零售柜商品检测识别系统(含UI界面、训练好的模型、Python代码、数据集)
yolo·ui·零售
2zcode1 天前
基于YOLOv8深度学习的智慧农业棉花采摘状态检测与语音提醒系统(PyQt5界面+数据集+训练代码)
人工智能·深度学习·yolo
王了了哇2 天前
YOLO-FaceV2: A Scale and Occlusion Aware Face Detector
yolo
Nobody332 天前
第Y7周:用Yolov8训练自己的数据集
yolo