YOLOv8 只检测人 只画框不要标签

参考了这个:YOLOv8只检测人(或其他一种或者多种类别)_yolov8只检测指定类别-CSDN博客

  1. 只检测人:predict的时候指定参数classes=[0]

  2. 只画框不要标签:plot的时候传入labels=False

  3. 标签中去掉置信度:result.plot(conf=False)

示例代码如下:

python 复制代码
#!/usr/bin/env python
import contextlib
from datetime import datetime
from pathlib import Path

# pip install opencv-python pillow ultralytics rich
import cv2
from ultralytics import YOLO  # type:ignore[import-untyped]

with contextlib.suppress(ImportError):
    from rich import print

model = YOLO("yolov8s.pt")
person_cls = 0  # 人员标签的类别ID
total = 200  # 总共截多少桢
interval = 20  # 每隔几桢推理一次
folder = Path(__file__).parent / "images"  # 未检测到人的图片存在这里
folder.mkdir(exist_ok=True)


cap = cv2.VideoCapture(0)  # 打开电脑摄像头
count = 0
while True:
    if not cap.isOpened():
        print(f"Failed to open video capture with {cap=}")
        break
    ok, frame = cap.read()
    if not ok:
        continue
    count += 1
    if count > total:
        print(f"Success to capture {total} frames~")
        break
    elif count % interval != 0:
        continue
    # 通过指定classes参数,限定要检测的类别
    # result = model(frame, classes=[person_cls], save=False, show=False, verbose=False)[0]
    result = model(frame, classes=[person_cls], save=False, verbose=False)[0]
    has_person = bool(result.summary())
    if has_person:
        print(f"{count=}, result: {result.verbose()}")
        result.show()
    else:
        file = folder / f"{count}.jpg"
        content = cv2.imencode(".jpg", result.plot())[1].tobytes()
        file.write_bytes(content)
        print(datetime.now(), f"{count=}, result: {has_person}, save to {file}")
cap.release()
print("✨ Done.")
相关推荐
深度学习lover4 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
Eric.Lee20219 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
极智视界14 小时前
无人机场景数据集大全「包含数据标注+划分脚本+训练脚本」 (持续原地更新)
算法·yolo·目标检测·数据集标注·分割算法·算法训练·无人机场景数据集
深度学习lover19 小时前
<项目代码>YOLOv8 夜间车辆识别<目标检测>
人工智能·yolo·目标检测·计算机视觉·表情识别·夜间车辆识别
小哥谈1 天前
源码解析篇 | YOLO11:计算机视觉领域的新突破 !对比YOLOv8如何 ?
人工智能·深度学习·神经网络·yolo·目标检测·机器学习·计算机视觉
挂科边缘1 天前
基于YOLOv8 Web的安全帽佩戴识别检测系统的研究和设计,数据集+训练结果+Web源码
前端·人工智能·python·yolo·目标检测·计算机视觉
小张贼嚣张2 天前
yolov8涨点系列之HiLo注意力机制引入
深度学习·yolo·机器学习
CV-King2 天前
yolov11-cpp-opencv-dnn推理onnx模型
人工智能·opencv·yolo·计算机视觉·dnn
辛勤的程序猿2 天前
YOLO即插即用---PConv
深度学习·yolo·计算机视觉
富士达幸运星2 天前
YOLOv4的网络架构解析
人工智能·yolo·目标跟踪