python_openCV_计算图片中的区域的黑色比例

希望对原始图片进行处理,然后计算图片上的黑色和白色的占比

上图,

原始图片

python 复制代码
import numpy as np
import cv2
import  matplotlib.pyplot as plt


def cal_black(img_file):
    #功能: 计算图片中的区域的黑色比例
    #取图片中不同的位置进行计算,然后计算器数值
    #----------------
    
    percentages={}#初始化变量    
    img=cv2.imread(img_file)#step1,加载图片#fiter_1.jpg    
    shape_size=img.shape#图片的尺寸
    dic_area=split_area(shape_size)#需要检测的位置。
    #剪切图片
    part_img_1=img[y1:y2,x1:x2]
    # 灰度处理
    img_grey=cv2.cvtColor(part_img_1,cv2.COLOR_RGB2GRAY)#COLOR_BGR2GRAY
    # 高斯过滤噪音
    ret, thresh = cv2.threshold(img_grey, 127, 255, cv2.THRESH_BINARY)  
    #img_source 为处理后的图片,二值化处理后的图片\
        
    black=0
    color_black=0
    color_white=0
    shape_size=thresh.shape
    for i in range(0,shape_size[0]):
        y,x=shape_size[0],shape_size[1]
        color=thresh[i,0]#得到他得颜色RGB数值
        if color==255:
            color_white=color_white+1#白色
        else:
            color_black=color_black+1#黑色
    percentages[key]=100*color_black/(color_white+color_white)#计算黑色占比

    return percentages

在代码中主要采用了遍历进行计算,每个点计算函数的颜色然后统计,比较简单暴力,

网络上有另外的方法,摘录如下;更改其中的代码就可以。

python 复制代码
# # 应用二值化 
ret, thresh = cv2.threshold(img_grey, 80, 255, cv2.THRESH_BINARY)  #80
# ------------计算黑色像素的数量
black_pixels = np.count_nonzero(thresh == 0)
 # 计算黑色像素的数量
black_pixels2 = np.sum(thresh == 0)
# ------------计算总的像素数量
total_pixels = thresh.shape[0] * thresh.shape[1]
# ------------计算黑色像素的占比
black_ratio = black_pixels / total_pixels

print(f"黑色像素的占比: {black_ratio:.4f}")

主要用于图像特征分析。

相关推荐
无须logic ᭄8 分钟前
CrypTen项目实践
python·机器学习·密码学·同态加密
百流20 分钟前
scala文件编译相关理解
开发语言·学习·scala
Channing Lewis21 分钟前
flask常见问答题
后端·python·flask
Channing Lewis22 分钟前
如何保护 Flask API 的安全性?
后端·python·flask
水兵没月1 小时前
钉钉群机器人设置——python版本
python·机器人·钉钉
Evand J1 小时前
matlab绘图——彩色螺旋图
开发语言·matlab·信息可视化
我想学LINUX2 小时前
【2024年华为OD机试】 (A卷,100分)- 微服务的集成测试(JavaScript&Java & Python&C/C++)
java·c语言·javascript·python·华为od·微服务·集成测试
深度混淆2 小时前
C#,入门教程(04)——Visual Studio 2022 数据编程实例:随机数与组合
开发语言·c#
雁于飞2 小时前
c语言贪吃蛇(极简版,基本能玩)
c语言·开发语言·笔记·学习·其他·课程设计·大作业