python_openCV_计算图片中的区域的黑色比例

希望对原始图片进行处理,然后计算图片上的黑色和白色的占比

上图,

原始图片

python 复制代码
import numpy as np
import cv2
import  matplotlib.pyplot as plt


def cal_black(img_file):
    #功能: 计算图片中的区域的黑色比例
    #取图片中不同的位置进行计算,然后计算器数值
    #----------------
    
    percentages={}#初始化变量    
    img=cv2.imread(img_file)#step1,加载图片#fiter_1.jpg    
    shape_size=img.shape#图片的尺寸
    dic_area=split_area(shape_size)#需要检测的位置。
    #剪切图片
    part_img_1=img[y1:y2,x1:x2]
    # 灰度处理
    img_grey=cv2.cvtColor(part_img_1,cv2.COLOR_RGB2GRAY)#COLOR_BGR2GRAY
    # 高斯过滤噪音
    ret, thresh = cv2.threshold(img_grey, 127, 255, cv2.THRESH_BINARY)  
    #img_source 为处理后的图片,二值化处理后的图片\
        
    black=0
    color_black=0
    color_white=0
    shape_size=thresh.shape
    for i in range(0,shape_size[0]):
        y,x=shape_size[0],shape_size[1]
        color=thresh[i,0]#得到他得颜色RGB数值
        if color==255:
            color_white=color_white+1#白色
        else:
            color_black=color_black+1#黑色
    percentages[key]=100*color_black/(color_white+color_white)#计算黑色占比

    return percentages

在代码中主要采用了遍历进行计算,每个点计算函数的颜色然后统计,比较简单暴力,

网络上有另外的方法,摘录如下;更改其中的代码就可以。

python 复制代码
# # 应用二值化 
ret, thresh = cv2.threshold(img_grey, 80, 255, cv2.THRESH_BINARY)  #80
# ------------计算黑色像素的数量
black_pixels = np.count_nonzero(thresh == 0)
 # 计算黑色像素的数量
black_pixels2 = np.sum(thresh == 0)
# ------------计算总的像素数量
total_pixels = thresh.shape[0] * thresh.shape[1]
# ------------计算黑色像素的占比
black_ratio = black_pixels / total_pixels

print(f"黑色像素的占比: {black_ratio:.4f}")

主要用于图像特征分析。

相关推荐
晨光3211几秒前
Day43 训练和测试的规范写法
python·深度学习·机器学习
海棠AI实验室1 分钟前
Python 学习路线图:从 0 到 1 的最短闭环
开发语言·python·学习
Macbethad5 分钟前
技术报告:加密算法实现与性能优化研究
开发语言
玄同7655 分钟前
Python 函数:LLM 通用逻辑的封装与复用
开发语言·人工智能·python·深度学习·语言模型·自然语言处理
俞凡8 分钟前
深入理解 Python GIL
python
lkbhua莱克瓦2410 分钟前
基础-事务
开发语言·数据库·笔记·mysql·事务
xxxmine13 分钟前
ConcurrentHashMap 和 Hashtable 的区别详解
java·开发语言
luoluoal19 分钟前
基于python的自然语言处理技术的话题文本分类的研究(源码+文档)
python·mysql·django·毕业设计·源码
阿猿收手吧!20 分钟前
【C++】brpc与grpc对比
开发语言·c++
智算菩萨23 分钟前
【Python机器学习】K-Means 聚类:数据分组与用户画像的完整技术指南
人工智能·python·机器学习