python_openCV_计算图片中的区域的黑色比例

希望对原始图片进行处理,然后计算图片上的黑色和白色的占比

上图,

原始图片

python 复制代码
import numpy as np
import cv2
import  matplotlib.pyplot as plt


def cal_black(img_file):
    #功能: 计算图片中的区域的黑色比例
    #取图片中不同的位置进行计算,然后计算器数值
    #----------------
    
    percentages={}#初始化变量    
    img=cv2.imread(img_file)#step1,加载图片#fiter_1.jpg    
    shape_size=img.shape#图片的尺寸
    dic_area=split_area(shape_size)#需要检测的位置。
    #剪切图片
    part_img_1=img[y1:y2,x1:x2]
    # 灰度处理
    img_grey=cv2.cvtColor(part_img_1,cv2.COLOR_RGB2GRAY)#COLOR_BGR2GRAY
    # 高斯过滤噪音
    ret, thresh = cv2.threshold(img_grey, 127, 255, cv2.THRESH_BINARY)  
    #img_source 为处理后的图片,二值化处理后的图片\
        
    black=0
    color_black=0
    color_white=0
    shape_size=thresh.shape
    for i in range(0,shape_size[0]):
        y,x=shape_size[0],shape_size[1]
        color=thresh[i,0]#得到他得颜色RGB数值
        if color==255:
            color_white=color_white+1#白色
        else:
            color_black=color_black+1#黑色
    percentages[key]=100*color_black/(color_white+color_white)#计算黑色占比

    return percentages

在代码中主要采用了遍历进行计算,每个点计算函数的颜色然后统计,比较简单暴力,

网络上有另外的方法,摘录如下;更改其中的代码就可以。

python 复制代码
# # 应用二值化 
ret, thresh = cv2.threshold(img_grey, 80, 255, cv2.THRESH_BINARY)  #80
# ------------计算黑色像素的数量
black_pixels = np.count_nonzero(thresh == 0)
 # 计算黑色像素的数量
black_pixels2 = np.sum(thresh == 0)
# ------------计算总的像素数量
total_pixels = thresh.shape[0] * thresh.shape[1]
# ------------计算黑色像素的占比
black_ratio = black_pixels / total_pixels

print(f"黑色像素的占比: {black_ratio:.4f}")

主要用于图像特征分析。

相关推荐
sa100271 分钟前
京东评论接口调用、签名生成与异常处理
开发语言·数据库·python
赵谨言5 分钟前
基于Python实现地理空间数据批处理技术探讨及实现--以“多规合一“总体规划数据空间叠加分析为例
大数据·开发语言·经验分享·python
独自破碎E39 分钟前
BISHI40数组取精
java·开发语言
DN20201 小时前
AI销售:从不迟到早退,永远秒回,您的忠实员工
人工智能·python
丑八怪大丑1 小时前
Java面向对象(进阶)
java·开发语言
java1234_小锋1 小时前
Java高频面试题:Java中变量和常量有什么区别?
java·开发语言·面试
编程之升级打怪1 小时前
Python的图形框架tkinter使用案例
python
enjoy嚣士1 小时前
Java 之 实现C++库函数等价函数遇到的问题
java·开发语言·c++
毕设源码-郭学长1 小时前
【开题答辩全过程】以 基于java的停车管理系统的设计与实为例,包含答辩的问题和答案
java·开发语言
MaoziShan1 小时前
CMU Subword Modeling | 09 Lexemes, or What Dictionaries Know about Morphology
开发语言·人工智能·机器学习·语言模型·自然语言处理·c#