python_openCV_计算图片中的区域的黑色比例

希望对原始图片进行处理,然后计算图片上的黑色和白色的占比

上图,

原始图片

python 复制代码
import numpy as np
import cv2
import  matplotlib.pyplot as plt


def cal_black(img_file):
    #功能: 计算图片中的区域的黑色比例
    #取图片中不同的位置进行计算,然后计算器数值
    #----------------
    
    percentages={}#初始化变量    
    img=cv2.imread(img_file)#step1,加载图片#fiter_1.jpg    
    shape_size=img.shape#图片的尺寸
    dic_area=split_area(shape_size)#需要检测的位置。
    #剪切图片
    part_img_1=img[y1:y2,x1:x2]
    # 灰度处理
    img_grey=cv2.cvtColor(part_img_1,cv2.COLOR_RGB2GRAY)#COLOR_BGR2GRAY
    # 高斯过滤噪音
    ret, thresh = cv2.threshold(img_grey, 127, 255, cv2.THRESH_BINARY)  
    #img_source 为处理后的图片,二值化处理后的图片\
        
    black=0
    color_black=0
    color_white=0
    shape_size=thresh.shape
    for i in range(0,shape_size[0]):
        y,x=shape_size[0],shape_size[1]
        color=thresh[i,0]#得到他得颜色RGB数值
        if color==255:
            color_white=color_white+1#白色
        else:
            color_black=color_black+1#黑色
    percentages[key]=100*color_black/(color_white+color_white)#计算黑色占比

    return percentages

在代码中主要采用了遍历进行计算,每个点计算函数的颜色然后统计,比较简单暴力,

网络上有另外的方法,摘录如下;更改其中的代码就可以。

python 复制代码
# # 应用二值化 
ret, thresh = cv2.threshold(img_grey, 80, 255, cv2.THRESH_BINARY)  #80
# ------------计算黑色像素的数量
black_pixels = np.count_nonzero(thresh == 0)
 # 计算黑色像素的数量
black_pixels2 = np.sum(thresh == 0)
# ------------计算总的像素数量
total_pixels = thresh.shape[0] * thresh.shape[1]
# ------------计算黑色像素的占比
black_ratio = black_pixels / total_pixels

print(f"黑色像素的占比: {black_ratio:.4f}")

主要用于图像特征分析。

相关推荐
程序员阿超的博客29 分钟前
Python 数据分析与机器学习入门 (八):用 Scikit-Learn 跑通第一个机器学习模型
python·机器学习·数据分析·scikit-learn·入门教程·python教程
2301_8035545232 分钟前
c++中类的前置声明
java·开发语言·c++
xingshanchang2 小时前
PyTorch 不支持旧GPU的异常状态与解决方案:CUDNN_STATUS_NOT_SUPPORTED_ARCH_MISMATCH
人工智能·pytorch·python
不想写bug呀3 小时前
多线程案例——单例模式
java·开发语言·单例模式
我不会写代码njdjnssj4 小时前
网络编程 TCP UDP
java·开发语言·jvm
费弗里4 小时前
Python全栈应用开发利器Dash 3.x新版本介绍(1)
python·dash
李少兄9 天前
解决OSS存储桶未创建导致的XML错误
xml·开发语言·python
阿蒙Amon9 天前
《C#图解教程 第5版》深度推荐
开发语言·c#
就叫飞六吧9 天前
基于keepalived、vip实现高可用nginx (centos)
python·nginx·centos
Vertira9 天前
PyTorch中的permute, transpose, view, reshape和flatten函数详解(已解决)
人工智能·pytorch·python