动手学深度学习(pytorch)学习记录25-汇聚层(池化层)[学习记录]

目录

汇聚层(池化层):

降低卷积层对位置的敏感性,同时降低对空间降采样表示的敏感性。

汇聚层和卷积层的运动方式一样,从左上角向右下角移动指定步幅,汇聚层执行的是"采样"操作。 汇聚层是没有参数的。

python 复制代码
import torch
from torch import nn

定义一个池化操作,X是张量,pool_size是汇聚层大小,mode默认为max即输出为输入区域的最大值,mode设置为avg时,输出为输入区域的平均值。

python 复制代码
def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size
    Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    return Y

输入张量,验证最大汇聚层

python 复制代码
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
print(X)
pool2d(X, (2, 2))
复制代码
tensor([[0., 1., 2.],
        [3., 4., 5.],
        [6., 7., 8.]])
tensor([[4., 5.],
        [7., 8.]])

验证平均汇聚层

python 复制代码
pool2d(X, (2, 2), 'avg')
复制代码
tensor([[2., 3.],
        [5., 6.]])

填充和步幅

python 复制代码
X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
X
复制代码
tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]]]])

默认情况下,深度学习框架中的步幅与汇聚窗口的大小相同,如果使用形状为(3,3)的汇聚层窗口,则得到的步幅大小为(3,3)。

python 复制代码
pool2d = nn.MaxPool2d(3)
pool2d(X)
复制代码
tensor([[[[10.]]]])

手动设置填充和步幅

python 复制代码
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
复制代码
tensor([[[[ 5.,  7.],
          [13., 15.]]]])

自定义汇聚层窗口、填充、步幅

python 复制代码
pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
pool2d(X)
复制代码
tensor([[[[ 5.,  7.],
          [13., 15.]]]])

多通道

在通道维度上连结张量X和X + 1,以构建具有2个通道的输入。

python 复制代码
X = torch.cat((X, X + 1), 1)
X
复制代码
tensor([[[[ 0.,  1.,  2.,  3.],
          [ 4.,  5.,  6.,  7.],
          [ 8.,  9., 10., 11.],
          [12., 13., 14., 15.]],

         [[ 1.,  2.,  3.,  4.],
          [ 5.,  6.,  7.,  8.],
          [ 9., 10., 11., 12.],
          [13., 14., 15., 16.]]]])

汇聚后输出通道的数量仍是2

python 复制代码
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
复制代码
tensor([[[[ 5.,  7.],
          [13., 15.]],

         [[ 6.,  8.],
          [14., 16.]]]])

封面图片来源

文章用图与封面一致。

欢迎点击我的主页查看更多文章。
本人学习地址https://zh-v2.d2l.ai/

恳请大佬批评指正。

相关推荐
JackmoodCC3 分钟前
Java学习总结-递归-递归寻找文件绝对路径
学习
神经星星9 分钟前
无需预对齐即可消除批次效应,东京大学团队开发深度学习框架STAIG,揭示肿瘤微环境中的详细基因信息
人工智能·深度学习·机器学习
守护者17018 分钟前
JAVA学习-练习试用Java实现“实现一个Hadoop程序,使用Hive进行复杂查询和数据筛查”
java·学习
程序员Linc27 分钟前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
吴梓穆1 小时前
UE5学习笔记 FPS游戏制作35 使用.csv配置文件
笔记·学习·ue5
虾球xz1 小时前
游戏引擎学习第199天
学习·游戏引擎
补三补四1 小时前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
誉鏐1 小时前
PyTorch复现逻辑回归
人工智能·pytorch·逻辑回归
A林玖2 小时前
【计算机相关学习】R语言
开发语言·学习·r语言
荷包蛋蛋怪2 小时前
【北京化工大学】 神经网络与深度学习 实验6 MATAR图像分类
人工智能·深度学习·神经网络·opencv·机器学习·计算机视觉·分类