一些可能很有用的矩阵知识

一些可有可无的矩阵知识

  • 酉矩阵

酉矩阵

  • 一个服从正态分布的向量乘以一个酉矩阵,得到的向量仍然服从正态分布

酉矩阵是一个复数矩阵,满足其转置的共轭等于其逆矩阵。当一个向量通过一个酉矩阵进行线性变换时,它的模长保持不变,只是发生了旋转和缩放。这意味着如果原始向量服从正态分布,变换后的向量仍将服从相同的正态分布。

p r o o f : proof: proof:

当一个向量服从正态分布时,其概率密度函数(PDF)可以表示为: f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2π σ1e−2σ2(x−μ)2其中, μ μ μ 是均值, σ σ σ 是标准差。现在,我们有一个酉矩阵U,将向量 x x x 乘以U 得到 y : y = U x y: y=Ux y:y=Ux。

对于 y 的概率密度函数,首先,计算y 的均值 μ y μ_y μy: μ y = E ( y ) = E ( U x ) = U E ( x ) \mu_y = E(y) = E(Ux) = UE(x) μy=E(y)=E(Ux)=UE(x)由于 x x x 服从正态分布且期望是 μ μ μ,则 μ y = U μ x = U μ μ_y=Uμ_x=Uμ μy=Uμx=Uμ,然后,计算 y y y的协方差矩阵 Σ y Σ_y Σy: Σ y = E [ ( y − μ y ) ( y − μ y ) T ] = E [ ( U x − U μ ) ( U x − U μ ) T ] = U E [ ( x − μ ) ( x − μ ) T ] U T \Sigma_y = E[(y - \mu_y)(y - \mu_y)^T] = E[(Ux - U\mu)(Ux - U\mu)^T] = UE[(x - \mu)(x - \mu)^T]U^T Σy=E[(y−μy)(y−μy)T]=E[(Ux−Uμ)(Ux−Uμ)T]=UE[(x−μ)(x−μ)T]UT由于 x x x 服从正态分布且协方差矩阵是 Σ Σ Σ,则 Σ y = U Σ U T Σ_y=UΣU^T Σy=UΣUT,现在,我们可以得到 y y y的概率密度函数 f y ( y ) f_y(y) fy(y):
f y ( y ) = 1 ( 2 π ) n ∣ Σ y ∣ e − 1 2 ( y − μ y ) T Σ y − 1 ( y − μ y ) f_y(y) = \frac{1}{\sqrt{(2\pi)^n|\Sigma_y|}}e^{-\frac{1}{2}(y-\mu_y)^T\Sigma_y^{-1}(y-\mu_y)} fy(y)=(2π)n∣Σy∣ 1e−21(y−μy)TΣy−1(y−μy)将 μ y \mu_y μy和 Σ y \Sigma_y Σy带入可得: f y ( y ) = 1 ( 2 π ) n ∣ Σ ∣ e − 1 2 ( y − U μ ) T ( U Σ U T ) − 1 ( y − U μ ) f_y(y) = \frac{1}{\sqrt{(2\pi)^n|\Sigma|}}e^{-\frac{1}{2}(y-U\mu)^T(U\Sigma U^T)^{-1}(y-U\mu)} fy(y)=(2π)n∣Σ∣ 1e−21(y−Uμ)T(UΣUT)−1(y−Uμ)由于酉矩阵 U 具有单位行列式( ∣ U ∣ = 1 ∣U∣=1 ∣U∣=1)和单位逆矩阵( U − 1 = U T U^{−1}=U^T U−1=UT),上式可简化为: f y ( y ) = 1 ( 2 π ) n ∣ Σ ∣ e − 1 2 ( y − U μ ) T ( U μ ) − 1 ( y − U μ ) f_y(y) = \frac{1}{\sqrt{(2\pi)^n|\Sigma|}}e^{-\frac{1}{2}(y-U\mu)^T(U\mu)^{-1}(y-U\mu)} fy(y)=(2π)n∣Σ∣ 1e−21(y−Uμ)T(Uμ)−1(y−Uμ)这与正态分布的概率密度函数形式相同,只是参数变为 Σ Σ Σ和 U μ U_μ Uμ。因此, y y y 也服从正态分布,其均值为 U μ U_μ Uμ,协方差矩阵为 Σ Σ Σ。

相关推荐
聚客AI5 小时前
🌟大模型为什么产生幻觉?预训练到推理的漏洞全揭秘
人工智能·llm·掘金·日新计划
Juchecar5 小时前
一文讲清 nn.Sequential 等容器类
人工智能
阿里云云原生6 小时前
如何快速看懂「祖传项目」?Qoder 强势推出新利器
人工智能
美团技术团队6 小时前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
程序员小袁7 小时前
基于C-MTEB/CMedQAv2-rerankingv的Qwen3-1.7b模型微调-demo
人工智能
飞哥数智坊8 小时前
AI 编程一年多,我终于明白:比技巧更重要的,是熟练度
人工智能·ai编程
新智元9 小时前
收手吧 GPT-5-Codex,外面全是 AI 编程智能体!
人工智能·openai
IT_陈寒9 小时前
Java 性能优化:5个被低估的JVM参数让你的应用吞吐量提升50%
前端·人工智能·后端
阿里云云原生9 小时前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场
人工智能
Memene摸鱼日报10 小时前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc