YOLO改进模块后不出现Glops参数问题

改进模块成功运行但是Glops不显示

在train.py这个文件的最上端添加这个代码即可实现

python 复制代码
import torch
from thop import profile
from models.yolo import Model  # 假设 Model 定义在 yolo.py 中

# 创建模型
 model = Model(cfg='E:/dyh/yolov5/models/odconv.yaml')  # 根据你的配置文件


 inputs = torch.randn(1, 3, 640, 640)
 macs, params = profile(model, inputs=(inputs,))

# 转换为 FLOPs
 flops = macs * 2
 print(f"FLOPs: {flops / 1e9-0.6} GFLOPs")  # 转换为 GFLOPs
#

这里面的-0.6是我根据正常的模块运行后和他之间计算出来的误差,大家可以自己尝试误差是多少然后跟改即可

相关推荐
金融小师妹4 小时前
AI算法视角下非农夜冲击波来袭,黄金高位区间震荡态势的深度神经网络解析
大数据·深度学习·1024程序员节
HyperAI超神经4 小时前
【vLLM 学习】vLLM TPU 分析
开发语言·人工智能·python·学习·大语言模型·vllm·gpu编程
AI营销实验室4 小时前
AI CRM系统线索打分,原圈科技引爆销售增长
人工智能·科技
爱笑的眼睛114 小时前
FastAPI 请求验证:超越 Pydantic 基础,构建企业级验证体系
java·人工智能·python·ai
拉姆哥的小屋4 小时前
基于深度学习的瞬变电磁法裂缝参数智能反演研究
人工智能·python·深度学习
木头左4 小时前
基于LSTM的多维特征融合量化交易策略实现
人工智能·rnn·lstm
Maynor9964 小时前
全面体验 Grok API 中转站(2025 · Grok 4 系列最新版)
人工智能
铅笔侠_小龙虾4 小时前
深度学习--阶段总结(1)
人工智能·深度学习·ai·回归
钱彬 (Qian Bin)4 小时前
项目实践11—全球证件智能识别系统(切换为PostgreSQL数据库)
人工智能·qt·fastapi
Heyxy4 小时前
RobustMerge—— 无训练的 PEFT 模型融合方法,从低秩分解视角揭示方向鲁棒性对 PEFT 融合的作用
人工智能·深度学习·机器学习·大模型