机械学习—零基础学习日志(概率论总笔记5)

引言------"黑天鹅"

要获得95%以上置信度的统计结果,需要被统计的对象出现上千次,但是如果整个样本只有几千字,被统计的对象能出现几次就不错了。这样得到的数据可能和真实的概率相差很远。怎么避免"黑天鹅"?

古德-图灵折扣估计法

在词语统计中,有点词语虽然是出现0次,但是实际的出现概率并不是永远不可能的零。

那需要把一些概率转移给到这些词语。

古德的做法实际上就是把出现1次的单词的总量,给了出现0次的,出现2次单词的总量给了出现1次的,以此类推。

古德的这种做法被称为"古德-图灵折扣估计",因为它实际上是把高频词的词频打了一个折,多出来的词频分配给了低频词。

插值法

贾里尼克把条件概率和非条件概率加起来,得到一个新的概率。在相加之前,分别给这两个概率权重。例如,条件概率的权重(更高)是0.7,非条件概率的权重是0.3。

如果条件P(X|Y)本身比较大,它在新的概率估计中会占主导地位。如果P(X|Y)本身比较小,说明它反正也不太可靠,而这时非条件概率,即P(X)本身则占了主导地位,因为X本身出现的次数会比较多,统计结果可信度会高一些。

插值法的精髓在于,相信那些见到次数比较多的统计结果,如果遇到统计数量不足时,就设法找一个可靠的统计结果来近似。

学习笔记:《数学通识50讲》吴军 ------得到 ,概率论章节

墙裂推荐大家去学习《数学通识50讲》,吴军老师讲解得超级超级好!

相关推荐
栀秋66615 分钟前
你会先找行还是直接拍平?两种二分策略你Pick哪个?
前端·javascript·算法
泰迪智能科技0121 分钟前
分享图书推荐 | 数字图像处理实战
人工智能·深度学习·计算机视觉
Rabbit_QL30 分钟前
【深度学习原理】数值稳定性(二):梯度是如何在深度网络中消失与爆炸的
人工智能·深度学习
如果你想拥有什么先让自己配得上拥有31 分钟前
数学思想和数学思维分别都有什么?
线性代数·算法·机器学习
core51233 分钟前
Adaboost (Adaptive Boosting):错题本上的逆袭
机器学习·adaboost·boosting
好奇龙猫1 小时前
【AI学习-comfyUI学习-第二十四节-open(contorlnet多重处理)+图生图openpose-各个部分学习】
人工智能·学习
长安er1 小时前
LeetCode136/169/75/31/287 算法技巧题核心笔记
数据结构·算法·leetcode·链表·双指针
MarkHD1 小时前
智能体在车联网中的应用:第29天 多智能体完全合作场景的核心算法:从CTDE思想到VDN与MADDPG的深度解析
算法
wanzhong23332 小时前
CUDA学习5-矩阵乘法(共享内存版)
深度学习·学习·算法·cuda·高性能计算
Hcoco_me2 小时前
大模型面试题19:梯度消失&梯度爆炸 纯白话文版
人工智能·rnn·深度学习·自然语言处理·word2vec