机械学习—零基础学习日志(概率论总笔记5)

引言------"黑天鹅"

要获得95%以上置信度的统计结果,需要被统计的对象出现上千次,但是如果整个样本只有几千字,被统计的对象能出现几次就不错了。这样得到的数据可能和真实的概率相差很远。怎么避免"黑天鹅"?

古德-图灵折扣估计法

在词语统计中,有点词语虽然是出现0次,但是实际的出现概率并不是永远不可能的零。

那需要把一些概率转移给到这些词语。

古德的做法实际上就是把出现1次的单词的总量,给了出现0次的,出现2次单词的总量给了出现1次的,以此类推。

古德的这种做法被称为"古德-图灵折扣估计",因为它实际上是把高频词的词频打了一个折,多出来的词频分配给了低频词。

插值法

贾里尼克把条件概率和非条件概率加起来,得到一个新的概率。在相加之前,分别给这两个概率权重。例如,条件概率的权重(更高)是0.7,非条件概率的权重是0.3。

如果条件P(X|Y)本身比较大,它在新的概率估计中会占主导地位。如果P(X|Y)本身比较小,说明它反正也不太可靠,而这时非条件概率,即P(X)本身则占了主导地位,因为X本身出现的次数会比较多,统计结果可信度会高一些。

插值法的精髓在于,相信那些见到次数比较多的统计结果,如果遇到统计数量不足时,就设法找一个可靠的统计结果来近似。

学习笔记:《数学通识50讲》吴军 ------得到 ,概率论章节

墙裂推荐大家去学习《数学通识50讲》,吴军老师讲解得超级超级好!

相关推荐
振华说技能3 分钟前
SolidWorks学习大纲-从基础到全面精通,请看详情
学习
曦月逸霜4 分钟前
离散数学-学习笔记(持续更新中~)
笔记·学习·离散数学
万行7 分钟前
机器学习&第四章支持向量机
人工智能·机器学习·支持向量机
搞笑症患者12 分钟前
压缩感知(Compressed Sensing, CS)
算法·最小二乘法·压缩感知·正交匹配追踪omp·迭代阈值it算法
hunter145015 分钟前
windows server AD域与CA部署证书
笔记
im_AMBER15 分钟前
Leetcode 101 对链表进行插入排序
数据结构·笔记·学习·算法·leetcode·排序算法
llddycidy18 分钟前
峰值需求预测中的机器学习:基础、趋势和见解(最新文献)
网络·人工智能·深度学习
larance18 分钟前
机器学习的一些基本知识
人工智能·机器学习
快手技术33 分钟前
AAAI 2026|全面发力!快手斩获 3 篇 Oral,12 篇论文入选!
前端·后端·算法
颜酱35 分钟前
前端算法必备:滑动窗口从入门到很熟练(最长/最短/计数三大类型)
前端·后端·算法