代码随想录 第九章 动态规划part03 01背包问题 二维

01背包问题 二维

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
int main(){
    int n, bagWeight;
    cin >> n >> bagWeight;
    std::vector<int> value(n, 0);
    std::vector<int> weight(n, 0);
    for (int i = 0; i < n; i++) cin >> weight[i];
    for (int i = 0; i < n; i++) cin >> value[i];
    std::vector<vector<int>> result(n, vector <int>(bagWeight+1, 0));
    for (int i = weight[0]; i <= bagWeight; i++) result[0][i] = value[0];
    for (int i = 1; i < n; i++){
        for(int j = 0; j <= bagWeight; j++){
            if(j<weight[i]) result[i][j]=result[i-1][j];
            if(j-weight[i]>=0) result[i][j] = max(result[i - 1][j], result[i-1][j - weight[i]] + value[i]);
            else result[i][j]=result[i-1][j];
        }
    }
    cout << result[n - 1][bagWeight];
    return 0;
}

这题动态规划数组的计算方式会有一些难以理解,不过如果按照随想录所给的思路在纸上推导一次就会清晰很多。在计算一个位置的值时又两种可能,一时当前剩余空间放的下,一种就是放不下,在保证动态规划数组计算过的值为最大价值时,在放不下的情况下,最大值就是用空间下上一行的值,而放的下的情况意味着需要去能给出那么多空间余量的方案中找,而在数组中,如果当前物品占空间为k,那么上一行的少k列位置的方案一定能给出k的余量,那么动态规划数组的计算过程也就明确了。

代码随想录 第九章 动态规划part03

相关推荐
gihigo19983 分钟前
基于全局自适应动态规划(GADP)的MATLAB实现方案
算法
ctyshr1 小时前
C++编译期数学计算
开发语言·c++·算法
zh_xuan1 小时前
最小跳跃次数
数据结构·算法
yumgpkpm1 小时前
2026软件:白嫖,开源,外包,招标,晚进场(2025年下半年),数科,AI...中国的企业软件产业出路
大数据·人工智能·hadoop·算法·kafka·开源·cloudera
孞㐑¥1 小时前
算法—队列+宽搜(bfs)+堆
开发语言·c++·经验分享·笔记·算法
yufuu982 小时前
并行算法在STL中的应用
开发语言·c++·算法
zh_xuan2 小时前
单青蛙跳台阶
数据结构·算法
Kx_Triumphs2 小时前
计算几何-旋转卡壳两种实现方案(兼P1452题解
算法·题解
代码游侠2 小时前
学习笔记——Linux字符设备驱动开发
linux·arm开发·驱动开发·单片机·嵌入式硬件·学习·算法
m0_736919102 小时前
C++中的享元模式变体
开发语言·c++·算法