代码随想录 第九章 动态规划part03 01背包问题 二维

01背包问题 二维

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
int main(){
    int n, bagWeight;
    cin >> n >> bagWeight;
    std::vector<int> value(n, 0);
    std::vector<int> weight(n, 0);
    for (int i = 0; i < n; i++) cin >> weight[i];
    for (int i = 0; i < n; i++) cin >> value[i];
    std::vector<vector<int>> result(n, vector <int>(bagWeight+1, 0));
    for (int i = weight[0]; i <= bagWeight; i++) result[0][i] = value[0];
    for (int i = 1; i < n; i++){
        for(int j = 0; j <= bagWeight; j++){
            if(j<weight[i]) result[i][j]=result[i-1][j];
            if(j-weight[i]>=0) result[i][j] = max(result[i - 1][j], result[i-1][j - weight[i]] + value[i]);
            else result[i][j]=result[i-1][j];
        }
    }
    cout << result[n - 1][bagWeight];
    return 0;
}

这题动态规划数组的计算方式会有一些难以理解,不过如果按照随想录所给的思路在纸上推导一次就会清晰很多。在计算一个位置的值时又两种可能,一时当前剩余空间放的下,一种就是放不下,在保证动态规划数组计算过的值为最大价值时,在放不下的情况下,最大值就是用空间下上一行的值,而放的下的情况意味着需要去能给出那么多空间余量的方案中找,而在数组中,如果当前物品占空间为k,那么上一行的少k列位置的方案一定能给出k的余量,那么动态规划数组的计算过程也就明确了。

代码随想录 第九章 动态规划part03

相关推荐
Victory_orsh12 分钟前
“自然搞懂”深度学习(基于Pytorch架构)——010203
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
CoovallyAIHub20 分钟前
突破360°跟踪极限!OmniTrack++:全景MOT新范式,HOTA指标狂飙43%
深度学习·算法·计算机视觉
得物技术1 小时前
得物管理类目配置线上化:从业务痛点到技术实现
后端·算法·数据分析
CoovallyAIHub1 小时前
首个大规模、跨模态医学影像编辑数据集,Med-Banana-50K数据集专为医学AI打造(附数据集地址)
深度学习·算法·计算机视觉
熬了夜的程序员1 小时前
【LeetCode】101. 对称二叉树
算法·leetcode·链表·职场和发展·矩阵
却道天凉_好个秋2 小时前
目标检测算法与原理(二):Tensorflow实现迁移学习
算法·目标检测·tensorflow
柳鲲鹏3 小时前
RGB转换为NV12,查表式算法
linux·c语言·算法
橘颂TA3 小时前
【剑斩OFFER】算法的暴力美学——串联所有单词的字串
数据结构·算法·c/c++
Kuo-Teng3 小时前
LeetCode 73: Set Matrix Zeroes
java·算法·leetcode·职场和发展