代码随想录 第九章 动态规划part03 01背包问题 二维

01背包问题 二维

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
int main(){
    int n, bagWeight;
    cin >> n >> bagWeight;
    std::vector<int> value(n, 0);
    std::vector<int> weight(n, 0);
    for (int i = 0; i < n; i++) cin >> weight[i];
    for (int i = 0; i < n; i++) cin >> value[i];
    std::vector<vector<int>> result(n, vector <int>(bagWeight+1, 0));
    for (int i = weight[0]; i <= bagWeight; i++) result[0][i] = value[0];
    for (int i = 1; i < n; i++){
        for(int j = 0; j <= bagWeight; j++){
            if(j<weight[i]) result[i][j]=result[i-1][j];
            if(j-weight[i]>=0) result[i][j] = max(result[i - 1][j], result[i-1][j - weight[i]] + value[i]);
            else result[i][j]=result[i-1][j];
        }
    }
    cout << result[n - 1][bagWeight];
    return 0;
}

这题动态规划数组的计算方式会有一些难以理解,不过如果按照随想录所给的思路在纸上推导一次就会清晰很多。在计算一个位置的值时又两种可能,一时当前剩余空间放的下,一种就是放不下,在保证动态规划数组计算过的值为最大价值时,在放不下的情况下,最大值就是用空间下上一行的值,而放的下的情况意味着需要去能给出那么多空间余量的方案中找,而在数组中,如果当前物品占空间为k,那么上一行的少k列位置的方案一定能给出k的余量,那么动态规划数组的计算过程也就明确了。

代码随想录 第九章 动态规划part03

相关推荐
leiming630 分钟前
C++ vector容器
开发语言·c++·算法
Xの哲學1 小时前
Linux流量控制: 内核队列的深度剖析
linux·服务器·算法·架构·边缘计算
yaoh.wang2 小时前
力扣(LeetCode) 88: 合并两个有序数组 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·双指针
LYFlied3 小时前
【每日算法】 LeetCode 56. 合并区间
前端·算法·leetcode·面试·职场和发展
艾醒3 小时前
大模型原理剖析——多头潜在注意力 (MLA) 详解
算法
艾醒3 小时前
大模型原理剖析——DeepSeek-V3深度解析:671B参数MoE大模型的技术突破与实践
算法
jifengzhiling4 小时前
零极点对消:原理、作用与风险
人工智能·算法
鲨莎分不晴5 小时前
【前沿技术】Offline RL 全解:当强化学习失去“试错”的权利
人工智能·算法·机器学习
XFF不秃头5 小时前
力扣刷题笔记-全排列
c++·笔记·算法·leetcode