代码随想录 第九章 动态规划part03 01背包问题 二维

01背包问题 二维

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
int main(){
    int n, bagWeight;
    cin >> n >> bagWeight;
    std::vector<int> value(n, 0);
    std::vector<int> weight(n, 0);
    for (int i = 0; i < n; i++) cin >> weight[i];
    for (int i = 0; i < n; i++) cin >> value[i];
    std::vector<vector<int>> result(n, vector <int>(bagWeight+1, 0));
    for (int i = weight[0]; i <= bagWeight; i++) result[0][i] = value[0];
    for (int i = 1; i < n; i++){
        for(int j = 0; j <= bagWeight; j++){
            if(j<weight[i]) result[i][j]=result[i-1][j];
            if(j-weight[i]>=0) result[i][j] = max(result[i - 1][j], result[i-1][j - weight[i]] + value[i]);
            else result[i][j]=result[i-1][j];
        }
    }
    cout << result[n - 1][bagWeight];
    return 0;
}

这题动态规划数组的计算方式会有一些难以理解,不过如果按照随想录所给的思路在纸上推导一次就会清晰很多。在计算一个位置的值时又两种可能,一时当前剩余空间放的下,一种就是放不下,在保证动态规划数组计算过的值为最大价值时,在放不下的情况下,最大值就是用空间下上一行的值,而放的下的情况意味着需要去能给出那么多空间余量的方案中找,而在数组中,如果当前物品占空间为k,那么上一行的少k列位置的方案一定能给出k的余量,那么动态规划数组的计算过程也就明确了。

代码随想录 第九章 动态规划part03

相关推荐
edisao10 分钟前
序幕-内部审计备忘录
java·jvm·算法
shehuiyuelaiyuehao23 分钟前
22Java对象的比较
java·python·算法
Dev7z1 小时前
滚压表面强化过程中变形诱导位错演化与梯度晶粒细化机理的数值模拟研究
人工智能·python·算法
吴秋霖1 小时前
apple游客下单逆向分析
python·算法·逆向分析
YunchengLi3 小时前
【计算机图形学中的四元数】2/2 Quaternions for Computer Graphics
人工智能·算法·机器学习
CUC-MenG4 小时前
Codeforces Round 1079 (Div. 2)A,B,C,D,E1,E2,F个人题解
c语言·开发语言·数学·算法
666HZ6664 小时前
数据结构4.0 串
c语言·数据结构·算法
weixin_421585014 小时前
常微分方程
算法
文艺倾年5 小时前
【免训练&测试时扩展】通过任务算术转移思维链能力
人工智能·分布式·算法
curry____3035 小时前
dfs全排列和全组合问题
算法·深度优先