代码随想录 第九章 动态规划part03 01背包问题 二维

01背包问题 二维

cpp 复制代码
#include <bits/stdc++.h>
using namespace std;
int main(){
    int n, bagWeight;
    cin >> n >> bagWeight;
    std::vector<int> value(n, 0);
    std::vector<int> weight(n, 0);
    for (int i = 0; i < n; i++) cin >> weight[i];
    for (int i = 0; i < n; i++) cin >> value[i];
    std::vector<vector<int>> result(n, vector <int>(bagWeight+1, 0));
    for (int i = weight[0]; i <= bagWeight; i++) result[0][i] = value[0];
    for (int i = 1; i < n; i++){
        for(int j = 0; j <= bagWeight; j++){
            if(j<weight[i]) result[i][j]=result[i-1][j];
            if(j-weight[i]>=0) result[i][j] = max(result[i - 1][j], result[i-1][j - weight[i]] + value[i]);
            else result[i][j]=result[i-1][j];
        }
    }
    cout << result[n - 1][bagWeight];
    return 0;
}

这题动态规划数组的计算方式会有一些难以理解,不过如果按照随想录所给的思路在纸上推导一次就会清晰很多。在计算一个位置的值时又两种可能,一时当前剩余空间放的下,一种就是放不下,在保证动态规划数组计算过的值为最大价值时,在放不下的情况下,最大值就是用空间下上一行的值,而放的下的情况意味着需要去能给出那么多空间余量的方案中找,而在数组中,如果当前物品占空间为k,那么上一行的少k列位置的方案一定能给出k的余量,那么动态规划数组的计算过程也就明确了。

代码随想录 第九章 动态规划part03

相关推荐
程序员东岸1 天前
《数据结构——排序(中)》选择与交换的艺术:从直接选择到堆排序的性能跃迁
数据结构·笔记·算法·leetcode·排序算法
程序员-King.1 天前
day104—对向双指针—接雨水(LeetCode-42)
算法·贪心算法
神仙别闹1 天前
基于C++实现(控制台)应用递推法完成经典型算法的应用
开发语言·c++·算法
Ayanami_Reii1 天前
进阶数据结构应用-一个简单的整数问题2(线段树解法)
数据结构·算法·线段树·延迟标记
listhi5201 天前
基于改进SET的时频分析MATLAB实现
开发语言·算法·matlab
Keep_Trying_Go1 天前
基于Zero-Shot的目标计数算法详解(Open-world Text-specified Object Counting)
人工智能·pytorch·python·算法·多模态·目标统计
xl.liu1 天前
零售行业仓库商品数据标记
算法·零售
confiself1 天前
通义灵码分析ms-swift框架中CHORD算法实现
开发语言·算法·swift
做怪小疯子1 天前
LeetCode 热题 100——二叉树——二叉树的层序遍历&将有序数组转换为二叉搜索树
算法·leetcode·职场和发展
CoderYanger1 天前
递归、搜索与回溯-记忆化搜索:38.最长递增子序列
java·算法·leetcode·1024程序员节