python数据分析与可视化

提供一个基本的例子,使用Pandas进行数据处理,Matplotlib和Seaborn进行数据可视化。我们将使用一个虚构的数据集来演示这个过程。

首先,确保环境中已经安装了必要的库,如pandas, matplotlib, 和 seaborn。如果没有安装,可以通过pip安装它们:

bash 复制代码
pip install pandas matplotlib seaborn

接下来是一个简单的数据分析与可视化的Python脚本示例:

python 复制代码
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# 创建一个简单的数据集
data = {
    'Month': ['Jan', 'Feb', 'Mar', 'Apr', 'May'],
    'Sales': [120, 150, 180, 160, 200],
    'Expenses': [80, 90, 110, 100, 130]
}

# 将数据转换为DataFrame
df = pd.DataFrame(data)

# 显示数据的前几行
print(df.head())

# 数据分析
# 计算利润
df['Profit'] = df['Sales'] - df['Expenses']
print("\nProfit calculation:\n", df)

# 数据可视化
plt.figure(figsize=(10, 5))

# 使用seaborn绘制折线图
sns.lineplot(x='Month', y='Sales', data=df, label='Sales')
sns.lineplot(x='Month', y='Expenses', data=df, label='Expenses')
sns.lineplot(x='Month', y='Profit', data=df, label='Profit')

# 添加图表标题和标签
plt.title('Monthly Sales, Expenses and Profit')
plt.xlabel('Month')
plt.ylabel('Amount ($)')
plt.legend()

# 显示图表
plt.show()

这段代码首先创建了一个简单的数据字典,并将其转换为一个Pandas DataFrame。然后计算每个月的利润,并将结果添加到DataFrame中。最后,它使用Matplotlib和Seaborn库来绘制每个月的销售额、支出和利润的折线图。

相关推荐
小途软件3 分钟前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
吴声子夜歌20 分钟前
Java数据结构与算法——基本数学问题
java·开发语言·windows
扫地的小何尚30 分钟前
NVIDIA RTX PC开源AI工具升级:加速LLM和扩散模型的性能革命
人工智能·python·算法·开源·nvidia·1024程序员节
wanglei2007081 小时前
生产者消费者
开发语言·python
清水白石0081 小时前
《从零到进阶:Pydantic v1 与 v2 的核心差异与零成本校验实现原理》
数据库·python
leo__5201 小时前
基于菲涅耳衍射积分的空心高斯光束传输数值模拟(MATLAB实现)
开发语言·matlab
昵称已被吞噬~‘(*@﹏@*)’~1 小时前
【RL+空战】学习记录03:基于JSBSim构造简易空空导弹模型,并结合python接口调用测试
开发语言·人工智能·python·学习·深度强化学习·jsbsim·空战
短剑重铸之日1 小时前
《SpringBoot4.0初识》第一篇:前瞻与思想
java·开发语言·后端·spring·springboot4.0
2501_941877982 小时前
从配置热更新到运行时自适应的互联网工程语法演进与多语言实践随笔分享
开发语言·前端·python
lsx2024062 小时前
Python 运算符详解
开发语言