python数据分析与可视化

提供一个基本的例子,使用Pandas进行数据处理,Matplotlib和Seaborn进行数据可视化。我们将使用一个虚构的数据集来演示这个过程。

首先,确保环境中已经安装了必要的库,如pandas, matplotlib, 和 seaborn。如果没有安装,可以通过pip安装它们:

bash 复制代码
pip install pandas matplotlib seaborn

接下来是一个简单的数据分析与可视化的Python脚本示例:

python 复制代码
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# 创建一个简单的数据集
data = {
    'Month': ['Jan', 'Feb', 'Mar', 'Apr', 'May'],
    'Sales': [120, 150, 180, 160, 200],
    'Expenses': [80, 90, 110, 100, 130]
}

# 将数据转换为DataFrame
df = pd.DataFrame(data)

# 显示数据的前几行
print(df.head())

# 数据分析
# 计算利润
df['Profit'] = df['Sales'] - df['Expenses']
print("\nProfit calculation:\n", df)

# 数据可视化
plt.figure(figsize=(10, 5))

# 使用seaborn绘制折线图
sns.lineplot(x='Month', y='Sales', data=df, label='Sales')
sns.lineplot(x='Month', y='Expenses', data=df, label='Expenses')
sns.lineplot(x='Month', y='Profit', data=df, label='Profit')

# 添加图表标题和标签
plt.title('Monthly Sales, Expenses and Profit')
plt.xlabel('Month')
plt.ylabel('Amount ($)')
plt.legend()

# 显示图表
plt.show()

这段代码首先创建了一个简单的数据字典,并将其转换为一个Pandas DataFrame。然后计算每个月的利润,并将结果添加到DataFrame中。最后,它使用Matplotlib和Seaborn库来绘制每个月的销售额、支出和利润的折线图。

相关推荐
SelectDB3 分钟前
Apache Doris 4.0 AI 能力揭秘(一):AI 函数之 LLM 函数介绍
数据库·人工智能·数据分析
倔强青铜三4 分钟前
苦练Python第39天:海象操作符 := 的入门、实战与避坑指南
人工智能·python·面试
数据超市36 分钟前
香港数据合集:建筑物、手机基站、POI、职住数据、用地类型
大数据·人工智能·智能手机·数据挖掘·数据分析
励志不掉头发的内向程序员1 小时前
STL库——string(类函数学习)
开发语言·c++
一百天成为python专家1 小时前
Python循环语句 从入门到精通
开发语言·人工智能·python·opencv·支持向量机·计算机视觉
Sunhen_Qiletian1 小时前
朝花夕拾(五)--------Python 中函数、库及接口的详解
开发语言·python
SelectDB1 小时前
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
大数据·数据分析·开源
hqwest1 小时前
C#WPF实战出真汁07--【系统设置】--菜品类型设置
开发语言·c#·wpf·grid设计·stackpanel布局
前路不黑暗@2 小时前
C语言:操作符详解(二)
c语言·开发语言·经验分享·笔记·学习·学习方法·visual studio
三年呀2 小时前
标题:移动端安全加固:发散创新,筑牢安全防线引言:随着移动互联网
网络·python·安全