LeetCode //C - 352. Data Stream as Disjoint Intervals

352. Data Stream as Disjoint Intervals

Given a data stream input of non-negative integers a 1 , a 2 , . . . , a n a_1, a_2, ..., a_n a1,a2,...,an, summarize the numbers seen so far as a list of disjoint intervals.

Implement the SummaryRanges class:

  • SummaryRanges() Initializes the object with an empty stream.
  • void addNum(int value) Adds the integer value to the stream.
  • int[][] getIntervals() Returns a summary of the integers in the stream currently as a list of disjoint intervals [ s t a r t i , e n d i ] [start_i, end_i] [starti,endi]. The answer should be sorted by s t a r t i start_i starti.
Example 1:

Input:

"SummaryRanges", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals"

\[\], \[1\], \[\], \[3\], \[\], \[7\], \[\], \[2\], \[\], \[6\], \[\]

Output:

null, null, \[\[1, 1\]\], null, \[\[1, 1\], \[3, 3\]\], null, \[\[1, 1\], \[3, 3\], \[7, 7\]\], null, \[\[1, 3\], \[7, 7\]\], null, \[\[1, 3\], \[6, 7\]\]

Explanation

SummaryRanges summaryRanges = new SummaryRanges();

summaryRanges.addNum(1); // arr = [1]

summaryRanges.getIntervals(); // return [[1, 1]]

summaryRanges.addNum(3); // arr = [1, 3]

summaryRanges.getIntervals(); // return [[1, 1], [3, 3]]

summaryRanges.addNum(7); // arr = [1, 3, 7]

summaryRanges.getIntervals(); // return [[1, 1], [3, 3], [7, 7]]

summaryRanges.addNum(2); // arr = [1, 2, 3, 7]

summaryRanges.getIntervals(); // return [[1, 3], [7, 7]]

summaryRanges.addNum(6); // arr = [1, 2, 3, 6, 7]

summaryRanges.getIntervals(); // return [[1, 3], [6, 7]]

Constraints:
  • 0 < = v a l u e < = 1 0 4 0 <= value <= 10^4 0<=value<=104
  • At most 3 ∗ 1 0 4 3 * 10^4 3∗104 calls will be made to addNum and getIntervals.
  • At most 1 0 2 10^2 102 calls will be made to getIntervals.

From: LeetCode

Link: 352. Data Stream as Disjoint Intervals


Solution:

Ideas:

1. Intervals Representation:

  • Intervals are stored in a 2D array intervals, where each interval is represented as a pair [start, end].
  • For example, the intervals for numbers [1, 3, 7] would be stored as [[1, 1], [3, 3], [7, 7]].

2. Efficient Insertion:

  • When a new number is added, the code finds the appropriate place to insert it. The intervals are maintained in sorted order, so the number is compared to the existing intervals.
  • Depending on whether the new number is adjacent to an existing interval, it either extends or merges the intervals.

3. Merging Logic:

  • Merge with the previous interval: If the new number is just after the previous interval (i.e., new number == previous interval end + 1), then the previous interval is extended.
  • Merge with the next interval: If the new number is just before the next interval (i.e., new number == next interval start - 1), then the next interval is extended.
  • Merge both previous and next intervals: If the new number is adjacent to both the previous and the next intervals, the two intervals are merged into one.
  • New Interval: If the new number is not adjacent to any existing intervals, a new interval is created.

4. Dynamic Array Management:

  • The intervals array has an initial capacity, and when it fills up, it is dynamically resized to accommodate more intervals. This ensures that the solution can handle up to the maximum number of intervals allowed by the problem constraints.
Code:
c 复制代码
typedef struct {
    int** intervals;   // To store the intervals as a 2D array
    int size;          // The current number of intervals
    int capacity;      // The allocated capacity of the intervals array
} SummaryRanges;

SummaryRanges* summaryRangesCreate() {
    SummaryRanges* obj = (SummaryRanges*)malloc(sizeof(SummaryRanges));
    obj->size = 0;
    obj->capacity = 10; // Initial capacity
    obj->intervals = (int**)malloc(sizeof(int*) * obj->capacity);
    for (int i = 0; i < obj->capacity; ++i) {
        obj->intervals[i] = (int*)malloc(sizeof(int) * 2); // Each interval has two elements [start, end]
    }
    return obj;
}

void summaryRangesAddNum(SummaryRanges* obj, int value) {
    int i = 0;
    
    // Find the position to insert or merge intervals
    while (i < obj->size && obj->intervals[i][1] < value) {
        i++;
    }
    
    // Check if value is already included in an interval
    if (i < obj->size && obj->intervals[i][0] <= value && obj->intervals[i][1] >= value) {
        return;
    }

    // Merge with the previous and next intervals if possible
    int mergeWithPrev = (i > 0 && obj->intervals[i - 1][1] + 1 == value);
    int mergeWithNext = (i < obj->size && obj->intervals[i][0] - 1 == value);

    if (mergeWithPrev && mergeWithNext) {
        // Merge both previous and next intervals
        obj->intervals[i - 1][1] = obj->intervals[i][1];
        // Remove the current interval
        for (int j = i; j < obj->size - 1; ++j) {
            obj->intervals[j][0] = obj->intervals[j + 1][0];
            obj->intervals[j][1] = obj->intervals[j + 1][1];
        }
        obj->size--;
    } else if (mergeWithPrev) {
        // Merge with the previous interval
        obj->intervals[i - 1][1] = value;
    } else if (mergeWithNext) {
        // Merge with the next interval
        obj->intervals[i][0] = value;
    } else {
        // Insert a new interval
        if (obj->size == obj->capacity) {
            obj->capacity *= 2;
            obj->intervals = (int**)realloc(obj->intervals, sizeof(int*) * obj->capacity);
            for (int j = obj->size; j < obj->capacity; ++j) {
                obj->intervals[j] = (int*)malloc(sizeof(int) * 2);
            }
        }
        for (int j = obj->size; j > i; --j) {
            obj->intervals[j][0] = obj->intervals[j - 1][0];
            obj->intervals[j][1] = obj->intervals[j - 1][1];
        }
        obj->intervals[i][0] = value;
        obj->intervals[i][1] = value;
        obj->size++;
    }
}

int** summaryRangesGetIntervals(SummaryRanges* obj, int* retSize, int** retColSize) {
    *retSize = obj->size;
    *retColSize = (int*)malloc(sizeof(int) * obj->size);
    for (int i = 0; i < obj->size; ++i) {
        (*retColSize)[i] = 2; // Each interval has two columns
    }
    return obj->intervals;
}

void summaryRangesFree(SummaryRanges* obj) {
    for (int i = 0; i < obj->capacity; ++i) {
        free(obj->intervals[i]);
    }
    free(obj->intervals);
    free(obj);
}

/**
 * Your SummaryRanges struct will be instantiated and called as such:
 * SummaryRanges* obj = summaryRangesCreate();
 * summaryRangesAddNum(obj, value);
 * int** param_2 = summaryRangesGetIntervals(obj, retSize, retColSize);
 * summaryRangesFree(obj);
 */
相关推荐
Allen_LVyingbo11 分钟前
医疗AI多智能体资源调度:用Python构建高性能MCU资源池
开发语言·人工智能·python·算法·知识图谱·健康医疗
叁散13 分钟前
实验项目3 温度传感器
人工智能·算法·机器学习
settingsun122513 分钟前
【AI-算法-02】卷积 Convolution
人工智能·算法
Hcoco_me17 分钟前
大模型面试题48:从白话到进阶详解LoRA 中 r 和 alpha 参数
开发语言·人工智能·深度学习·算法·transformer·word2vec
多米Domi01123 分钟前
0x3f 第24天 黑马web (安了半天程序 )hot100普通数组
数据结构·python·算法·leetcode
Swift社区24 分钟前
LeetCode 468 验证 IP 地址
tcp/ip·算法·leetcode
枫叶丹424 分钟前
【Qt开发】Qt系统(四)-> Qt文件
c语言·开发语言·c++·qt
TDengine (老段)1 小时前
TDengine C/C++ 连接器进阶指南
大数据·c语言·c++·人工智能·物联网·时序数据库·tdengine
黎雁·泠崖2 小时前
栈与队列实战通关:3道经典OJ题深度解析
c语言·数据结构·leetcode
ytttr8739 小时前
隐马尔可夫模型(HMM)MATLAB实现范例
开发语言·算法·matlab