LeetCode //C - 352. Data Stream as Disjoint Intervals

352. Data Stream as Disjoint Intervals

Given a data stream input of non-negative integers a 1 , a 2 , . . . , a n a_1, a_2, ..., a_n a1,a2,...,an, summarize the numbers seen so far as a list of disjoint intervals.

Implement the SummaryRanges class:

  • SummaryRanges() Initializes the object with an empty stream.
  • void addNum(int value) Adds the integer value to the stream.
  • int[][] getIntervals() Returns a summary of the integers in the stream currently as a list of disjoint intervals [ s t a r t i , e n d i ] [start_i, end_i] [starti,endi]. The answer should be sorted by s t a r t i start_i starti.
Example 1:

Input:

"SummaryRanges", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals"

\[\], \[1\], \[\], \[3\], \[\], \[7\], \[\], \[2\], \[\], \[6\], \[\]

Output:

null, null, \[\[1, 1\]\], null, \[\[1, 1\], \[3, 3\]\], null, \[\[1, 1\], \[3, 3\], \[7, 7\]\], null, \[\[1, 3\], \[7, 7\]\], null, \[\[1, 3\], \[6, 7\]\]

Explanation

SummaryRanges summaryRanges = new SummaryRanges();

summaryRanges.addNum(1); // arr = [1]

summaryRanges.getIntervals(); // return [[1, 1]]

summaryRanges.addNum(3); // arr = [1, 3]

summaryRanges.getIntervals(); // return [[1, 1], [3, 3]]

summaryRanges.addNum(7); // arr = [1, 3, 7]

summaryRanges.getIntervals(); // return [[1, 1], [3, 3], [7, 7]]

summaryRanges.addNum(2); // arr = [1, 2, 3, 7]

summaryRanges.getIntervals(); // return [[1, 3], [7, 7]]

summaryRanges.addNum(6); // arr = [1, 2, 3, 6, 7]

summaryRanges.getIntervals(); // return [[1, 3], [6, 7]]

Constraints:
  • 0 < = v a l u e < = 1 0 4 0 <= value <= 10^4 0<=value<=104
  • At most 3 ∗ 1 0 4 3 * 10^4 3∗104 calls will be made to addNum and getIntervals.
  • At most 1 0 2 10^2 102 calls will be made to getIntervals.

From: LeetCode

Link: 352. Data Stream as Disjoint Intervals


Solution:

Ideas:

1. Intervals Representation:

  • Intervals are stored in a 2D array intervals, where each interval is represented as a pair [start, end].
  • For example, the intervals for numbers [1, 3, 7] would be stored as [[1, 1], [3, 3], [7, 7]].

2. Efficient Insertion:

  • When a new number is added, the code finds the appropriate place to insert it. The intervals are maintained in sorted order, so the number is compared to the existing intervals.
  • Depending on whether the new number is adjacent to an existing interval, it either extends or merges the intervals.

3. Merging Logic:

  • Merge with the previous interval: If the new number is just after the previous interval (i.e., new number == previous interval end + 1), then the previous interval is extended.
  • Merge with the next interval: If the new number is just before the next interval (i.e., new number == next interval start - 1), then the next interval is extended.
  • Merge both previous and next intervals: If the new number is adjacent to both the previous and the next intervals, the two intervals are merged into one.
  • New Interval: If the new number is not adjacent to any existing intervals, a new interval is created.

4. Dynamic Array Management:

  • The intervals array has an initial capacity, and when it fills up, it is dynamically resized to accommodate more intervals. This ensures that the solution can handle up to the maximum number of intervals allowed by the problem constraints.
Code:
c 复制代码
typedef struct {
    int** intervals;   // To store the intervals as a 2D array
    int size;          // The current number of intervals
    int capacity;      // The allocated capacity of the intervals array
} SummaryRanges;

SummaryRanges* summaryRangesCreate() {
    SummaryRanges* obj = (SummaryRanges*)malloc(sizeof(SummaryRanges));
    obj->size = 0;
    obj->capacity = 10; // Initial capacity
    obj->intervals = (int**)malloc(sizeof(int*) * obj->capacity);
    for (int i = 0; i < obj->capacity; ++i) {
        obj->intervals[i] = (int*)malloc(sizeof(int) * 2); // Each interval has two elements [start, end]
    }
    return obj;
}

void summaryRangesAddNum(SummaryRanges* obj, int value) {
    int i = 0;
    
    // Find the position to insert or merge intervals
    while (i < obj->size && obj->intervals[i][1] < value) {
        i++;
    }
    
    // Check if value is already included in an interval
    if (i < obj->size && obj->intervals[i][0] <= value && obj->intervals[i][1] >= value) {
        return;
    }

    // Merge with the previous and next intervals if possible
    int mergeWithPrev = (i > 0 && obj->intervals[i - 1][1] + 1 == value);
    int mergeWithNext = (i < obj->size && obj->intervals[i][0] - 1 == value);

    if (mergeWithPrev && mergeWithNext) {
        // Merge both previous and next intervals
        obj->intervals[i - 1][1] = obj->intervals[i][1];
        // Remove the current interval
        for (int j = i; j < obj->size - 1; ++j) {
            obj->intervals[j][0] = obj->intervals[j + 1][0];
            obj->intervals[j][1] = obj->intervals[j + 1][1];
        }
        obj->size--;
    } else if (mergeWithPrev) {
        // Merge with the previous interval
        obj->intervals[i - 1][1] = value;
    } else if (mergeWithNext) {
        // Merge with the next interval
        obj->intervals[i][0] = value;
    } else {
        // Insert a new interval
        if (obj->size == obj->capacity) {
            obj->capacity *= 2;
            obj->intervals = (int**)realloc(obj->intervals, sizeof(int*) * obj->capacity);
            for (int j = obj->size; j < obj->capacity; ++j) {
                obj->intervals[j] = (int*)malloc(sizeof(int) * 2);
            }
        }
        for (int j = obj->size; j > i; --j) {
            obj->intervals[j][0] = obj->intervals[j - 1][0];
            obj->intervals[j][1] = obj->intervals[j - 1][1];
        }
        obj->intervals[i][0] = value;
        obj->intervals[i][1] = value;
        obj->size++;
    }
}

int** summaryRangesGetIntervals(SummaryRanges* obj, int* retSize, int** retColSize) {
    *retSize = obj->size;
    *retColSize = (int*)malloc(sizeof(int) * obj->size);
    for (int i = 0; i < obj->size; ++i) {
        (*retColSize)[i] = 2; // Each interval has two columns
    }
    return obj->intervals;
}

void summaryRangesFree(SummaryRanges* obj) {
    for (int i = 0; i < obj->capacity; ++i) {
        free(obj->intervals[i]);
    }
    free(obj->intervals);
    free(obj);
}

/**
 * Your SummaryRanges struct will be instantiated and called as such:
 * SummaryRanges* obj = summaryRangesCreate();
 * summaryRangesAddNum(obj, value);
 * int** param_2 = summaryRangesGetIntervals(obj, retSize, retColSize);
 * summaryRangesFree(obj);
 */
相关推荐
qiuiuiu4132 分钟前
正点原子RK3568学习日志-编译第一个驱动程序helloworld
linux·c语言·开发语言·单片机
爱吃橘的橘猫3 分钟前
嵌入式系统与嵌入式 C 语言(2)
c语言·算法·嵌入式
235166 分钟前
【LeetCode】146. LRU 缓存
java·后端·算法·leetcode·链表·缓存·职场和发展
weixin_307779131 小时前
使用Python高效读取ZIP压缩文件中的UTF-8 JSON数据到Pandas和PySpark DataFrame
开发语言·python·算法·自动化·json
柳安忆1 小时前
【论文阅读】Sparks of Science
算法
web安全工具库2 小时前
从课堂笔记到实践:深入理解Linux C函数库的奥秘
java·数据库·算法
爱编程的鱼3 小时前
C# 变量详解:从基础概念到高级应用
java·算法·c#
tkevinjd4 小时前
反转链表及其应用(力扣2130)
数据结构·leetcode·链表
HalvmånEver4 小时前
红黑树实现与原理剖析(上篇):核心规则与插入平衡逻辑
数据结构·c++·学习·算法·红黑树
哆啦刘小洋4 小时前
T:堆的基本介绍
算法