LeetCode //C - 352. Data Stream as Disjoint Intervals

352. Data Stream as Disjoint Intervals

Given a data stream input of non-negative integers a 1 , a 2 , . . . , a n a_1, a_2, ..., a_n a1,a2,...,an, summarize the numbers seen so far as a list of disjoint intervals.

Implement the SummaryRanges class:

  • SummaryRanges() Initializes the object with an empty stream.
  • void addNum(int value) Adds the integer value to the stream.
  • int[][] getIntervals() Returns a summary of the integers in the stream currently as a list of disjoint intervals [ s t a r t i , e n d i ] [start_i, end_i] [starti,endi]. The answer should be sorted by s t a r t i start_i starti.
Example 1:

Input:

["SummaryRanges", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals"]

[[], [1], [], [3], [], [7], [], [2], [], [6], []]
Output:

[null, null, [[1, 1]], null, [[1, 1], [3, 3]], null, [[1, 1], [3, 3], [7, 7]], null, [[1, 3], [7, 7]], null, [[1, 3], [6, 7]]]
Explanation

SummaryRanges summaryRanges = new SummaryRanges();

summaryRanges.addNum(1); // arr = [1]

summaryRanges.getIntervals(); // return [[1, 1]]

summaryRanges.addNum(3); // arr = [1, 3]

summaryRanges.getIntervals(); // return [[1, 1], [3, 3]]

summaryRanges.addNum(7); // arr = [1, 3, 7]

summaryRanges.getIntervals(); // return [[1, 1], [3, 3], [7, 7]]

summaryRanges.addNum(2); // arr = [1, 2, 3, 7]

summaryRanges.getIntervals(); // return [[1, 3], [7, 7]]

summaryRanges.addNum(6); // arr = [1, 2, 3, 6, 7]

summaryRanges.getIntervals(); // return [[1, 3], [6, 7]]

Constraints:
  • 0 < = v a l u e < = 1 0 4 0 <= value <= 10^4 0<=value<=104
  • At most 3 ∗ 1 0 4 3 * 10^4 3∗104 calls will be made to addNum and getIntervals.
  • At most 1 0 2 10^2 102 calls will be made to getIntervals.

From: LeetCode

Link: 352. Data Stream as Disjoint Intervals


Solution:

Ideas:

1. Intervals Representation:

  • Intervals are stored in a 2D array intervals, where each interval is represented as a pair [start, end].
  • For example, the intervals for numbers [1, 3, 7] would be stored as [[1, 1], [3, 3], [7, 7]].

2. Efficient Insertion:

  • When a new number is added, the code finds the appropriate place to insert it. The intervals are maintained in sorted order, so the number is compared to the existing intervals.
  • Depending on whether the new number is adjacent to an existing interval, it either extends or merges the intervals.

3. Merging Logic:

  • Merge with the previous interval: If the new number is just after the previous interval (i.e., new number == previous interval end + 1), then the previous interval is extended.
  • Merge with the next interval: If the new number is just before the next interval (i.e., new number == next interval start - 1), then the next interval is extended.
  • Merge both previous and next intervals: If the new number is adjacent to both the previous and the next intervals, the two intervals are merged into one.
  • New Interval: If the new number is not adjacent to any existing intervals, a new interval is created.

4. Dynamic Array Management:

  • The intervals array has an initial capacity, and when it fills up, it is dynamically resized to accommodate more intervals. This ensures that the solution can handle up to the maximum number of intervals allowed by the problem constraints.
Code:
c 复制代码
typedef struct {
    int** intervals;   // To store the intervals as a 2D array
    int size;          // The current number of intervals
    int capacity;      // The allocated capacity of the intervals array
} SummaryRanges;

SummaryRanges* summaryRangesCreate() {
    SummaryRanges* obj = (SummaryRanges*)malloc(sizeof(SummaryRanges));
    obj->size = 0;
    obj->capacity = 10; // Initial capacity
    obj->intervals = (int**)malloc(sizeof(int*) * obj->capacity);
    for (int i = 0; i < obj->capacity; ++i) {
        obj->intervals[i] = (int*)malloc(sizeof(int) * 2); // Each interval has two elements [start, end]
    }
    return obj;
}

void summaryRangesAddNum(SummaryRanges* obj, int value) {
    int i = 0;
    
    // Find the position to insert or merge intervals
    while (i < obj->size && obj->intervals[i][1] < value) {
        i++;
    }
    
    // Check if value is already included in an interval
    if (i < obj->size && obj->intervals[i][0] <= value && obj->intervals[i][1] >= value) {
        return;
    }

    // Merge with the previous and next intervals if possible
    int mergeWithPrev = (i > 0 && obj->intervals[i - 1][1] + 1 == value);
    int mergeWithNext = (i < obj->size && obj->intervals[i][0] - 1 == value);

    if (mergeWithPrev && mergeWithNext) {
        // Merge both previous and next intervals
        obj->intervals[i - 1][1] = obj->intervals[i][1];
        // Remove the current interval
        for (int j = i; j < obj->size - 1; ++j) {
            obj->intervals[j][0] = obj->intervals[j + 1][0];
            obj->intervals[j][1] = obj->intervals[j + 1][1];
        }
        obj->size--;
    } else if (mergeWithPrev) {
        // Merge with the previous interval
        obj->intervals[i - 1][1] = value;
    } else if (mergeWithNext) {
        // Merge with the next interval
        obj->intervals[i][0] = value;
    } else {
        // Insert a new interval
        if (obj->size == obj->capacity) {
            obj->capacity *= 2;
            obj->intervals = (int**)realloc(obj->intervals, sizeof(int*) * obj->capacity);
            for (int j = obj->size; j < obj->capacity; ++j) {
                obj->intervals[j] = (int*)malloc(sizeof(int) * 2);
            }
        }
        for (int j = obj->size; j > i; --j) {
            obj->intervals[j][0] = obj->intervals[j - 1][0];
            obj->intervals[j][1] = obj->intervals[j - 1][1];
        }
        obj->intervals[i][0] = value;
        obj->intervals[i][1] = value;
        obj->size++;
    }
}

int** summaryRangesGetIntervals(SummaryRanges* obj, int* retSize, int** retColSize) {
    *retSize = obj->size;
    *retColSize = (int*)malloc(sizeof(int) * obj->size);
    for (int i = 0; i < obj->size; ++i) {
        (*retColSize)[i] = 2; // Each interval has two columns
    }
    return obj->intervals;
}

void summaryRangesFree(SummaryRanges* obj) {
    for (int i = 0; i < obj->capacity; ++i) {
        free(obj->intervals[i]);
    }
    free(obj->intervals);
    free(obj);
}

/**
 * Your SummaryRanges struct will be instantiated and called as such:
 * SummaryRanges* obj = summaryRangesCreate();
 * summaryRangesAddNum(obj, value);
 * int** param_2 = summaryRangesGetIntervals(obj, retSize, retColSize);
 * summaryRangesFree(obj);
 */
相关推荐
MSTcheng.6 分钟前
C语言操作符(上)
c语言·开发语言
无限码力6 分钟前
路灯照明问题
数据结构·算法·华为od·职场和发展·华为ode卷
嘻嘻哈哈樱桃7 分钟前
前k个高频元素力扣--347
数据结构·算法·leetcode
dorabighead7 分钟前
小哆啦解题记:加油站的奇幻冒险
数据结构·算法
Ritsu栗子23 分钟前
代码随想录算法训练营day35
c++·算法
MrZhangBaby25 分钟前
SQL-leetcode—1158. 市场分析 I
java·sql·leetcode
好一点,更好一点33 分钟前
systemC示例
开发语言·c++·算法
卷卷的小趴菜学编程1 小时前
c++之List容器的模拟实现
服务器·c语言·开发语言·数据结构·c++·算法·list
林开落L1 小时前
模拟算法习题篇
算法
玉蜉蝣1 小时前
PAT甲级-1014 Waiting in Line
c++·算法·队列·pat甲·银行排队问题