LeetCode //C - 352. Data Stream as Disjoint Intervals

352. Data Stream as Disjoint Intervals

Given a data stream input of non-negative integers a 1 , a 2 , . . . , a n a_1, a_2, ..., a_n a1,a2,...,an, summarize the numbers seen so far as a list of disjoint intervals.

Implement the SummaryRanges class:

  • SummaryRanges() Initializes the object with an empty stream.
  • void addNum(int value) Adds the integer value to the stream.
  • int[][] getIntervals() Returns a summary of the integers in the stream currently as a list of disjoint intervals [ s t a r t i , e n d i ] [start_i, end_i] [starti,endi]. The answer should be sorted by s t a r t i start_i starti.
Example 1:

Input:

"SummaryRanges", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals"

\[\], \[1\], \[\], \[3\], \[\], \[7\], \[\], \[2\], \[\], \[6\], \[\]

Output:

null, null, \[\[1, 1\]\], null, \[\[1, 1\], \[3, 3\]\], null, \[\[1, 1\], \[3, 3\], \[7, 7\]\], null, \[\[1, 3\], \[7, 7\]\], null, \[\[1, 3\], \[6, 7\]\]

Explanation

SummaryRanges summaryRanges = new SummaryRanges();

summaryRanges.addNum(1); // arr = [1]

summaryRanges.getIntervals(); // return [[1, 1]]

summaryRanges.addNum(3); // arr = [1, 3]

summaryRanges.getIntervals(); // return [[1, 1], [3, 3]]

summaryRanges.addNum(7); // arr = [1, 3, 7]

summaryRanges.getIntervals(); // return [[1, 1], [3, 3], [7, 7]]

summaryRanges.addNum(2); // arr = [1, 2, 3, 7]

summaryRanges.getIntervals(); // return [[1, 3], [7, 7]]

summaryRanges.addNum(6); // arr = [1, 2, 3, 6, 7]

summaryRanges.getIntervals(); // return [[1, 3], [6, 7]]

Constraints:
  • 0 < = v a l u e < = 1 0 4 0 <= value <= 10^4 0<=value<=104
  • At most 3 ∗ 1 0 4 3 * 10^4 3∗104 calls will be made to addNum and getIntervals.
  • At most 1 0 2 10^2 102 calls will be made to getIntervals.

From: LeetCode

Link: 352. Data Stream as Disjoint Intervals


Solution:

Ideas:

1. Intervals Representation:

  • Intervals are stored in a 2D array intervals, where each interval is represented as a pair [start, end].
  • For example, the intervals for numbers [1, 3, 7] would be stored as [[1, 1], [3, 3], [7, 7]].

2. Efficient Insertion:

  • When a new number is added, the code finds the appropriate place to insert it. The intervals are maintained in sorted order, so the number is compared to the existing intervals.
  • Depending on whether the new number is adjacent to an existing interval, it either extends or merges the intervals.

3. Merging Logic:

  • Merge with the previous interval: If the new number is just after the previous interval (i.e., new number == previous interval end + 1), then the previous interval is extended.
  • Merge with the next interval: If the new number is just before the next interval (i.e., new number == next interval start - 1), then the next interval is extended.
  • Merge both previous and next intervals: If the new number is adjacent to both the previous and the next intervals, the two intervals are merged into one.
  • New Interval: If the new number is not adjacent to any existing intervals, a new interval is created.

4. Dynamic Array Management:

  • The intervals array has an initial capacity, and when it fills up, it is dynamically resized to accommodate more intervals. This ensures that the solution can handle up to the maximum number of intervals allowed by the problem constraints.
Code:
c 复制代码
typedef struct {
    int** intervals;   // To store the intervals as a 2D array
    int size;          // The current number of intervals
    int capacity;      // The allocated capacity of the intervals array
} SummaryRanges;

SummaryRanges* summaryRangesCreate() {
    SummaryRanges* obj = (SummaryRanges*)malloc(sizeof(SummaryRanges));
    obj->size = 0;
    obj->capacity = 10; // Initial capacity
    obj->intervals = (int**)malloc(sizeof(int*) * obj->capacity);
    for (int i = 0; i < obj->capacity; ++i) {
        obj->intervals[i] = (int*)malloc(sizeof(int) * 2); // Each interval has two elements [start, end]
    }
    return obj;
}

void summaryRangesAddNum(SummaryRanges* obj, int value) {
    int i = 0;
    
    // Find the position to insert or merge intervals
    while (i < obj->size && obj->intervals[i][1] < value) {
        i++;
    }
    
    // Check if value is already included in an interval
    if (i < obj->size && obj->intervals[i][0] <= value && obj->intervals[i][1] >= value) {
        return;
    }

    // Merge with the previous and next intervals if possible
    int mergeWithPrev = (i > 0 && obj->intervals[i - 1][1] + 1 == value);
    int mergeWithNext = (i < obj->size && obj->intervals[i][0] - 1 == value);

    if (mergeWithPrev && mergeWithNext) {
        // Merge both previous and next intervals
        obj->intervals[i - 1][1] = obj->intervals[i][1];
        // Remove the current interval
        for (int j = i; j < obj->size - 1; ++j) {
            obj->intervals[j][0] = obj->intervals[j + 1][0];
            obj->intervals[j][1] = obj->intervals[j + 1][1];
        }
        obj->size--;
    } else if (mergeWithPrev) {
        // Merge with the previous interval
        obj->intervals[i - 1][1] = value;
    } else if (mergeWithNext) {
        // Merge with the next interval
        obj->intervals[i][0] = value;
    } else {
        // Insert a new interval
        if (obj->size == obj->capacity) {
            obj->capacity *= 2;
            obj->intervals = (int**)realloc(obj->intervals, sizeof(int*) * obj->capacity);
            for (int j = obj->size; j < obj->capacity; ++j) {
                obj->intervals[j] = (int*)malloc(sizeof(int) * 2);
            }
        }
        for (int j = obj->size; j > i; --j) {
            obj->intervals[j][0] = obj->intervals[j - 1][0];
            obj->intervals[j][1] = obj->intervals[j - 1][1];
        }
        obj->intervals[i][0] = value;
        obj->intervals[i][1] = value;
        obj->size++;
    }
}

int** summaryRangesGetIntervals(SummaryRanges* obj, int* retSize, int** retColSize) {
    *retSize = obj->size;
    *retColSize = (int*)malloc(sizeof(int) * obj->size);
    for (int i = 0; i < obj->size; ++i) {
        (*retColSize)[i] = 2; // Each interval has two columns
    }
    return obj->intervals;
}

void summaryRangesFree(SummaryRanges* obj) {
    for (int i = 0; i < obj->capacity; ++i) {
        free(obj->intervals[i]);
    }
    free(obj->intervals);
    free(obj);
}

/**
 * Your SummaryRanges struct will be instantiated and called as such:
 * SummaryRanges* obj = summaryRangesCreate();
 * summaryRangesAddNum(obj, value);
 * int** param_2 = summaryRangesGetIntervals(obj, retSize, retColSize);
 * summaryRangesFree(obj);
 */
相关推荐
一碗白开水一5 小时前
【第19话:定位建图】SLAM点云配准之3D-3D ICP(Iterative Closest Point)方法详解
人工智能·算法
编码浪子5 小时前
趣味学RUST基础篇(函数式编程闭包)
开发语言·算法·rust
Want5955 小时前
C/C++圣诞树②
c语言·c++·算法
索迪迈科技6 小时前
算法题(203):矩阵最小路径和
线性代数·算法·矩阵
默默无名的大学生6 小时前
数据结构——链表的基本操作
数据结构·算法
_OP_CHEN6 小时前
数据结构(C语言篇):(十一)二叉树概念介绍
c语言·开发语言·数据结构·二叉树·学习笔记··
Neverfadeaway6 小时前
C语言————冒泡排序(例题2)
c语言·数据结构·算法·冒泡排序·升序排列·降序排列
惊鸿.Jh7 小时前
1733. 需要教语言的最少人数
算法·leetcode
索迪迈科技7 小时前
C语言 memcpy 的使用
c语言·开发语言
yuyousheng7 小时前
C语言中sizeof和strlen的区别
c语言·开发语言·哈希算法