LeetCode //C - 352. Data Stream as Disjoint Intervals

352. Data Stream as Disjoint Intervals

Given a data stream input of non-negative integers a 1 , a 2 , . . . , a n a_1, a_2, ..., a_n a1,a2,...,an, summarize the numbers seen so far as a list of disjoint intervals.

Implement the SummaryRanges class:

  • SummaryRanges() Initializes the object with an empty stream.
  • void addNum(int value) Adds the integer value to the stream.
  • int[][] getIntervals() Returns a summary of the integers in the stream currently as a list of disjoint intervals [ s t a r t i , e n d i ] [start_i, end_i] [starti,endi]. The answer should be sorted by s t a r t i start_i starti.
Example 1:

Input:

"SummaryRanges", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals", "addNum", "getIntervals"

\[\], \[1\], \[\], \[3\], \[\], \[7\], \[\], \[2\], \[\], \[6\], \[\]

Output:

null, null, \[\[1, 1\]\], null, \[\[1, 1\], \[3, 3\]\], null, \[\[1, 1\], \[3, 3\], \[7, 7\]\], null, \[\[1, 3\], \[7, 7\]\], null, \[\[1, 3\], \[6, 7\]\]

Explanation

SummaryRanges summaryRanges = new SummaryRanges();

summaryRanges.addNum(1); // arr = [1]

summaryRanges.getIntervals(); // return [[1, 1]]

summaryRanges.addNum(3); // arr = [1, 3]

summaryRanges.getIntervals(); // return [[1, 1], [3, 3]]

summaryRanges.addNum(7); // arr = [1, 3, 7]

summaryRanges.getIntervals(); // return [[1, 1], [3, 3], [7, 7]]

summaryRanges.addNum(2); // arr = [1, 2, 3, 7]

summaryRanges.getIntervals(); // return [[1, 3], [7, 7]]

summaryRanges.addNum(6); // arr = [1, 2, 3, 6, 7]

summaryRanges.getIntervals(); // return [[1, 3], [6, 7]]

Constraints:
  • 0 < = v a l u e < = 1 0 4 0 <= value <= 10^4 0<=value<=104
  • At most 3 ∗ 1 0 4 3 * 10^4 3∗104 calls will be made to addNum and getIntervals.
  • At most 1 0 2 10^2 102 calls will be made to getIntervals.

From: LeetCode

Link: 352. Data Stream as Disjoint Intervals


Solution:

Ideas:

1. Intervals Representation:

  • Intervals are stored in a 2D array intervals, where each interval is represented as a pair [start, end].
  • For example, the intervals for numbers [1, 3, 7] would be stored as [[1, 1], [3, 3], [7, 7]].

2. Efficient Insertion:

  • When a new number is added, the code finds the appropriate place to insert it. The intervals are maintained in sorted order, so the number is compared to the existing intervals.
  • Depending on whether the new number is adjacent to an existing interval, it either extends or merges the intervals.

3. Merging Logic:

  • Merge with the previous interval: If the new number is just after the previous interval (i.e., new number == previous interval end + 1), then the previous interval is extended.
  • Merge with the next interval: If the new number is just before the next interval (i.e., new number == next interval start - 1), then the next interval is extended.
  • Merge both previous and next intervals: If the new number is adjacent to both the previous and the next intervals, the two intervals are merged into one.
  • New Interval: If the new number is not adjacent to any existing intervals, a new interval is created.

4. Dynamic Array Management:

  • The intervals array has an initial capacity, and when it fills up, it is dynamically resized to accommodate more intervals. This ensures that the solution can handle up to the maximum number of intervals allowed by the problem constraints.
Code:
c 复制代码
typedef struct {
    int** intervals;   // To store the intervals as a 2D array
    int size;          // The current number of intervals
    int capacity;      // The allocated capacity of the intervals array
} SummaryRanges;

SummaryRanges* summaryRangesCreate() {
    SummaryRanges* obj = (SummaryRanges*)malloc(sizeof(SummaryRanges));
    obj->size = 0;
    obj->capacity = 10; // Initial capacity
    obj->intervals = (int**)malloc(sizeof(int*) * obj->capacity);
    for (int i = 0; i < obj->capacity; ++i) {
        obj->intervals[i] = (int*)malloc(sizeof(int) * 2); // Each interval has two elements [start, end]
    }
    return obj;
}

void summaryRangesAddNum(SummaryRanges* obj, int value) {
    int i = 0;
    
    // Find the position to insert or merge intervals
    while (i < obj->size && obj->intervals[i][1] < value) {
        i++;
    }
    
    // Check if value is already included in an interval
    if (i < obj->size && obj->intervals[i][0] <= value && obj->intervals[i][1] >= value) {
        return;
    }

    // Merge with the previous and next intervals if possible
    int mergeWithPrev = (i > 0 && obj->intervals[i - 1][1] + 1 == value);
    int mergeWithNext = (i < obj->size && obj->intervals[i][0] - 1 == value);

    if (mergeWithPrev && mergeWithNext) {
        // Merge both previous and next intervals
        obj->intervals[i - 1][1] = obj->intervals[i][1];
        // Remove the current interval
        for (int j = i; j < obj->size - 1; ++j) {
            obj->intervals[j][0] = obj->intervals[j + 1][0];
            obj->intervals[j][1] = obj->intervals[j + 1][1];
        }
        obj->size--;
    } else if (mergeWithPrev) {
        // Merge with the previous interval
        obj->intervals[i - 1][1] = value;
    } else if (mergeWithNext) {
        // Merge with the next interval
        obj->intervals[i][0] = value;
    } else {
        // Insert a new interval
        if (obj->size == obj->capacity) {
            obj->capacity *= 2;
            obj->intervals = (int**)realloc(obj->intervals, sizeof(int*) * obj->capacity);
            for (int j = obj->size; j < obj->capacity; ++j) {
                obj->intervals[j] = (int*)malloc(sizeof(int) * 2);
            }
        }
        for (int j = obj->size; j > i; --j) {
            obj->intervals[j][0] = obj->intervals[j - 1][0];
            obj->intervals[j][1] = obj->intervals[j - 1][1];
        }
        obj->intervals[i][0] = value;
        obj->intervals[i][1] = value;
        obj->size++;
    }
}

int** summaryRangesGetIntervals(SummaryRanges* obj, int* retSize, int** retColSize) {
    *retSize = obj->size;
    *retColSize = (int*)malloc(sizeof(int) * obj->size);
    for (int i = 0; i < obj->size; ++i) {
        (*retColSize)[i] = 2; // Each interval has two columns
    }
    return obj->intervals;
}

void summaryRangesFree(SummaryRanges* obj) {
    for (int i = 0; i < obj->capacity; ++i) {
        free(obj->intervals[i]);
    }
    free(obj->intervals);
    free(obj);
}

/**
 * Your SummaryRanges struct will be instantiated and called as such:
 * SummaryRanges* obj = summaryRangesCreate();
 * summaryRangesAddNum(obj, value);
 * int** param_2 = summaryRangesGetIntervals(obj, retSize, retColSize);
 * summaryRangesFree(obj);
 */
相关推荐
ysa05103032 分钟前
Dijkstra 算法#图论
数据结构·算法·图论
一定要AK1 小时前
2025—暑期训练一
算法
一定要AK1 小时前
贪心专题练习
算法
森焱森2 小时前
无人机三轴稳定控制(2)____根据目标俯仰角,实现俯仰稳定化控制,计算出升降舵输出
c语言·单片机·算法·架构·无人机
ytttr8732 小时前
matlab通过Q学习算法解决房间路径规划问题
学习·算法·matlab
go54631584654 小时前
修改Spatial-MLLM项目,使其专注于无人机航拍视频的空间理解
人工智能·算法·机器学习·架构·音视频·无人机
油泼辣子多加4 小时前
【Torch】nn.BatchNorm1d算法详解
算法
nlog3n4 小时前
基于 govaluate 的监控系统中,如何设计灵活可扩展的自定义表达式函数体系
算法·go
IT古董4 小时前
【第三章:神经网络原理详解与Pytorch入门】01.神经网络算法理论详解与实践-(2)神经网络整体结构
pytorch·神经网络·算法
ThetaarSofVenice4 小时前
垃圾收集相关算法Test
java·jvm·算法