【Tools】大模型中的BERT概念


摇来摇去摇碎点点的金黄

伸手牵来一片梦的霞光

南方的小巷推开多情的门窗

年轻和我们歌唱

摇来摇去摇着温柔的阳光

轻轻托起一件梦的衣裳

古老的都市每天都改变模样

🎵 方芳《摇太阳》


BERT(Bidirectional Encoder Representations from Transformers)是一种基于Transformer的预训练语言模型,由Google于2018年发布。BERT的目标是通过大规模无监督预训练学习来生成通用的语言表示,然后可以用于各种下游任务,如文本分类、命名实体识别等。

BERT模型的主要特点是:双向编码(Bidirectional Encoding)和Transformer结构。

双向编码指的是BERT在训练过程中,使用了一个双向(前向和后向)的Transformer编码器来建模上下文信息。这使得BERT能够利用整个句子的上下文信息,而不仅仅是局部的上下文。这种双向编码的方式使得BERT在处理自然语言任务时更加准确。

Transformer是一种基于自注意力机制的神经网络结构,由Attention机制和前馈神经网络组成。在BERT中,Transformer的编码器被用于将输入的文本序列进行编码。Transformer的自注意力机制能够帮助模型捕捉输入序列中的依赖关系,并为每个单词生成上下文相关的表示。

BERT模型的训练过程包括两个阶段:预训练和微调。预训练阶段使用大规模的无标签文本数据进行训练,通过掩码语言模型和下一句预测任务来学习通用的语言表示。在微调阶段,使用有标签的任务特定数据对BERT进行微调,以适应具体的下游任务。

BERT在自然语言处理领域取得了很大的突破,成为了许多任务的基准模型。其强大的语言表示能力和可迁移性使得它成为了大模型中重要的一员。

相关推荐
chian-ocean1 分钟前
视觉新范式:基于 `ops-transformer` 的 Vision Transformer 高效部署
人工智能·深度学习·transformer
程序猿追4 分钟前
探索 CANN Graph 引擎的计算图编译优化策略:深度技术解读
人工智能·目标跟踪
哈__4 分钟前
CANN加速语音识别ASR推理:声学模型与语言模型融合优化
人工智能·语言模型·语音识别
慢半拍iii14 分钟前
CANN算子开发实战:手把手教你基于ops-nn仓库编写Broadcast广播算子
人工智能·计算机网络·ai
User_芊芊君子27 分钟前
CANN数学计算基石ops-math深度解析:高性能科学计算与AI模型加速的核心引擎
人工智能·深度学习·神经网络·ai
小白|30 分钟前
CANN与联邦学习融合:构建隐私安全的分布式AI推理与训练系统
人工智能·机器学习·自动驾驶
艾莉丝努力练剑38 分钟前
hixl vs NCCL:昇腾生态通信库的独特优势分析
运维·c++·人工智能·cann
梦帮科技39 分钟前
Node.js配置生成器CLI工具开发实战
前端·人工智能·windows·前端框架·node.js·json
程序员泠零澪回家种桔子41 分钟前
Spring AI框架全方位详解
java·人工智能·后端·spring·ai·架构
Echo_NGC223743 分钟前
【FFmpeg 使用指南】Part 3:码率控制策略与质量评估体系
人工智能·ffmpeg·视频·码率