机器学习1--概述

机器学习概述

一、概述

  1. 人工智能的应用:交通、网络安全、电子商务、
  2. 人工智能发展三要素:数据、算法、计算力。
    • CPU,GPU,TPU
    • CPU主要适合I\O密集型任务
    • GPU主要适合计算密集型任务

提问:什么类型的程序适合在GPU上运行?

  • 第一种,计算密集型程序。计算密集型程序是指大部分运行时间花在寄存器的运算上,寄存器的速度和处理器的速度相当,从寄存器读写数据几乎没有延时。
  • 第二种,易于并行的程序。GPU其实是一种SIMD架构,有成千上百个核,每一个核在同一时间最好能做一样的事情。
  1. 人工智能、机器学习和深度学习:
    • 机器学习是人工智能的实现途径
    • 深度学习是机器学习的一个方法发展而来

二、发展历程

  1. 起源:

    • 图灵测试。
    • 达特茅斯会议。1956年。
  2. 时间线:

    • 第一是起步发展期:1956-1960;
    • 第二是反思发展期:20世纪60年代-70年代初;
    • 第三是应用发展期:20世纪70年代初-80年代中;
    • 第四是低迷发展期:20世纪80年代中-90年代中;
    • 第五是稳步发展期:20世纪90年代中-2010;
    • 第六是蓬勃发展期:2011至今。

三、主要分支

主要分支:

  • 计算机视觉:机器感知环境的能力

  • 语音识别:识别语音并将其转换成对应文本的技术

  • 文本挖掘、分类:文本分类,理解组织文档

  • 机器翻译

  • 机器人

四、工作流程

  1. 什么是机器学习?

    机器学习是从数据中自动分析获得模型,并利用模型对未知数据预测。

  2. 机器学习工作流程

    • 1 获取数据
    • 2 数据基本处理
    • 3 特征工程
    • 4 机器学习,模型训练
    • 5 模型评估

五、算法分类

  1. 监督学习
    输入数据由特征值和目标值组成,输出为一个连续的值(回归)或者有限个离散的值(分类)。
  2. 无监督学习
    输入数据由特征值组成,没有目标值。
  3. 半监督学习
    训练集同时包含有标记样本数据和未标记数据。
  4. 强化学习
    决策问题。agent采用行动操纵环境,从一个状态转变到另一个状态,得到奖励。

六、模型评估

  1. 分类模型评估:准确率
  2. 回归模型评估:均方根误差
  3. 拟合
    • 欠拟合,学习到太少
    • 过拟合,在训练集优越,在测试集不能泛化
相关推荐
Li emily11 分钟前
解决港股实时行情数据 API 接入难题
人工智能·python·fastapi
Aaron158813 分钟前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
J_Xiong011728 分钟前
【Agents篇】04:Agent 的推理能力——思维链与自我反思
人工智能·ai agent·推理
星爷AG I1 小时前
9-26 主动视觉(AGI基础理论)
人工智能·计算机视觉·agi
爱吃泡芙的小白白1 小时前
CNN参数量计算全解析:从基础公式到前沿优化
人工智能·神经网络·cnn·参数量
拐爷1 小时前
vibe‑coding 九阳神功之喂:把链接喂成“本地知识”,AI 才能稳定干活(API / 设计 / 报道 / 截图)
人工智能
石去皿1 小时前
大模型面试通关指南:28道高频考题深度解析与实战要点
人工智能·python·面试·职场和发展
yuezhilangniao1 小时前
AI智能体全栈开发工程化规范 备忘 ~ fastAPI+Next.js
javascript·人工智能·fastapi
好奇龙猫1 小时前
【人工智能学习-AI入试相关题目练习-第十八次】
人工智能·学习
Guheyunyi1 小时前
智能守护:视频安全监测系统的演进与未来
大数据·人工智能·科技·安全·信息可视化