机器学习1--概述

机器学习概述

一、概述

  1. 人工智能的应用:交通、网络安全、电子商务、
  2. 人工智能发展三要素:数据、算法、计算力。
    • CPU,GPU,TPU
    • CPU主要适合I\O密集型任务
    • GPU主要适合计算密集型任务

提问:什么类型的程序适合在GPU上运行?

  • 第一种,计算密集型程序。计算密集型程序是指大部分运行时间花在寄存器的运算上,寄存器的速度和处理器的速度相当,从寄存器读写数据几乎没有延时。
  • 第二种,易于并行的程序。GPU其实是一种SIMD架构,有成千上百个核,每一个核在同一时间最好能做一样的事情。
  1. 人工智能、机器学习和深度学习:
    • 机器学习是人工智能的实现途径
    • 深度学习是机器学习的一个方法发展而来

二、发展历程

  1. 起源:

    • 图灵测试。
    • 达特茅斯会议。1956年。
  2. 时间线:

    • 第一是起步发展期:1956-1960;
    • 第二是反思发展期:20世纪60年代-70年代初;
    • 第三是应用发展期:20世纪70年代初-80年代中;
    • 第四是低迷发展期:20世纪80年代中-90年代中;
    • 第五是稳步发展期:20世纪90年代中-2010;
    • 第六是蓬勃发展期:2011至今。

三、主要分支

主要分支:

  • 计算机视觉:机器感知环境的能力

  • 语音识别:识别语音并将其转换成对应文本的技术

  • 文本挖掘、分类:文本分类,理解组织文档

  • 机器翻译

  • 机器人

四、工作流程

  1. 什么是机器学习?

    机器学习是从数据中自动分析获得模型,并利用模型对未知数据预测。

  2. 机器学习工作流程

    • 1 获取数据
    • 2 数据基本处理
    • 3 特征工程
    • 4 机器学习,模型训练
    • 5 模型评估

五、算法分类

  1. 监督学习
    输入数据由特征值和目标值组成,输出为一个连续的值(回归)或者有限个离散的值(分类)。
  2. 无监督学习
    输入数据由特征值组成,没有目标值。
  3. 半监督学习
    训练集同时包含有标记样本数据和未标记数据。
  4. 强化学习
    决策问题。agent采用行动操纵环境,从一个状态转变到另一个状态,得到奖励。

六、模型评估

  1. 分类模型评估:准确率
  2. 回归模型评估:均方根误差
  3. 拟合
    • 欠拟合,学习到太少
    • 过拟合,在训练集优越,在测试集不能泛化
相关推荐
qzhqbb1 分钟前
语言模型的采样方法
人工智能·语言模型·自然语言处理
qzhqbb4 分钟前
基于 Transformer 的语言模型
人工智能·语言模型·自然语言处理·transformer
___Dream5 分钟前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
极客代码13 分钟前
【Python TensorFlow】入门到精通
开发语言·人工智能·python·深度学习·tensorflow
义小深15 分钟前
TensorFlow|咖啡豆识别
人工智能·python·tensorflow
Tianyanxiao1 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售
撞南墙者1 小时前
OpenCV自学系列(1)——简介和GUI特征操作
人工智能·opencv·计算机视觉
OCR_wintone4211 小时前
易泊车牌识别相机,助力智慧工地建设
人工智能·数码相机·ocr
王哈哈^_^1 小时前
【数据集】【YOLO】【VOC】目标检测数据集,查找数据集,yolo目标检测算法详细实战训练步骤!
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·pyqt
一者仁心2 小时前
【AI技术】PaddleSpeech
人工智能