N元语言模型 —— 一文讲懂!!!

目录

引言

[一. 基本知识](#一. 基本知识)

二.参数估计

三.数据平滑

一.加1法

二.减值法/折扣法

[​编辑 1.Good-Turing 估计](#编辑 1.Good-Turing 估计)

[​编辑 2.Back-off (后备/后退)方法](#编辑 2.Back-off (后备/后退)方法)

3.绝对减值法

​编辑4.线性减值法

5.比较

[三.删除插值法(Deleted interpolation)](#三.删除插值法(Deleted interpolation))

四.模型自适应


引言

本章节讲的知识主要是来解决以上这个问题:即如何计算一段话在我们日常生活中出现的概率。在学完本章节后,你可以尝试解决下面的问题:

一. 基本知识

对于一段话,我们如何计算其在生活中出现的概率呢?首先我们可以把每一句话拆分成一个个词,这些词就是我们所说的"统计基元 ",一个个统计基元组成了我们的一句话。而对于我们每一个统计基元来说,其前面的基元就是历史基元

如何计算一段话的概率?

假设我们这段话是"我爱你",我们该怎么计算呢?你可能会想到,"我爱你"这句话的概率,不就应该等于"我"出现的概率*"爱"出现的概率*"你"出现的概率。实际上来说,这样算的话我们就忽略了词与词的关系,比如"爱"会不会影响"你"出现的概率,比如我们大部分人都会把"爱你"连起来说,这样的话我们就不能把他们俩独立开来了。这样的话,就相当于我们计算概率的时候要参考一句话前面的基元。因此我们应该用下面的公式:

可以理解为:句子的概率 = 第 1 个词的概率 × 第 2 个词依赖第 1 个词的概率 × 第 3 个词依赖前两个词的概率 × ... × 第 m 个词依赖前 m - 1 个词的概率

历史基元数量爆炸问题

显然随着要预测的词位置越靠后(i 越大 ),需要参考的 "历史基元数量" 也越多(i−1 个 ),这样的话很容易出现后面的历史基元越来越多出现参数爆炸。即:

那我们该如何解决这个问题呢?

我们的解决办法是等价类划分:

举个例子:"我爱你"和"石头爱地"这两句话,假设n等于2,则"你"前面的"我爱"和"地"前面的"石头爱",因为前n-1个基元,即"爱" 相同,则这俩句话为同一等价类。因此我们很容易看出来,这个n其实就是相当于缩减了我们的视野,我们只看前n-1个基元而看不到更前面的基元了。

因此:

但是,这样的话,显然我们的句子的第一个单词没有前置的选项让我们看了,也就是说没有历史基元,这对我们是非常不方便的,因为我们无法统一编程,并且我们还丢失了其作为第一个单词的位置信息。所以我们为这个句子加上了开头和结尾符号来标识。

即:

这样的话我们就非常好求解了,例题如下:

(下面三个分别是一元,二元,三元划分) 那么我们的概率就是:

二.参数估计

好了,既然我们已经整出来了表示,那么我们模型里的这些参数是啥呢?就是说我们这里的P是什么呢?这就引出了我们下面的概念:

例题:

那若是求一个句子里包含从没出现的词呢?这是很常见的,比如训练语料不可能包含所有人的姓名,如果一个人的姓名比较生僻,比如叫"诸葛大力",这样的话是否"诸葛大力爱张伟"在日常生活中是不可能发生的呢?显然不是。但是我们的计算下整个的概率是0。显然是不合理的。于是我们便引出了数据平滑。

三.数据平滑

困惑度你就理解为这个句子的常见程度,如果困惑度很高,说明句子很罕见,让人看着很"困惑"。

一.加1法

意思就是分子加1,分母加上词汇库的总量(不包含开始和结束字符)

例题:

二.减值法/折扣法

1.Good-Turing 估计

举例:

给你们算个一个吧。第一个r*,照着公式的话,r+1等于2,因为我们这里的r等于1,然后nr和nr+1直接看表的话就是2053和458,也就是说r*=2*(458/2053)约等于0.446,其他的你们照着我这样做就行。

2.Back-off (后备/后退)方法

3.绝对减值法

4.线性减值法

5.比较

三.删除插值法(Deleted interpolation)

四.模型自适应

相关推荐
小鸡吃米…6 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫6 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)6 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan6 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维7 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS7 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd7 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟8 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然8 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~8 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1