【SOP】使用MMDeploy将MMAction2的模型转换为TensorRT

配置环境

执行一个MMAction2的Demo

执行 demo/demo.py ,并使用 tsm 配置文件。

bash 复制代码
python demo/demo.py "configs/recognition/tsm/tsm_imagenet-pretrained-r50_8xb16-1x1x16-50e_kinetics400-rgb.py" "../mmaction2 Ckpt/tsm_imagenet-pretrained-r50_8xb16-1x1x16-50e_kinetics400-rgb_20220831-042b1748.pth" "demo/demo.mp4" "tools/data/kinetics/label_map_k400.txt"

将Demo转为TensorRT

Clone the mmdeploy repo: git clone -b main https://github.com/open-mmlab/mmdeploy.git

假设当前路径是:

其中 Ckpt 存放了 .pth 文件,将要生成的 .onnx.engine 也会放在 Ckpt 中。.engine 就是转换好的 TensorRT 文件。

执行下面的指令完成TensorRT转换:

bash 复制代码
cd mmdeploy
python tools/deploy.py "configs/mmaction/video-recognition/video-recognition_2d_tensorrt_static-224x224.py" "../mmaction2/configs/recognition/tsm/tsm_imagenet-pretrained-r50_8xb16-1x1x16-50e_kinetics400-rgb.py" "../Ckpt/tsm_imagenet-pretrained-r50_8xb16-1x1x16-50e_kinetics400-rgb_20220831-042b1748.pth" "tests/data/arm_wrestling.mp4" --work-dir "../Ckpt/tsm_trt" --device cuda:0 --show --dump-info

会遇到报错:

Error Code 4: Internal Error (input: kMIN dimensions in profile 0 are [1,250,3,224,224] but input has static dimensions [1,160,3,224,224].)

Because the shape in mmdeploy/configs/mmaction/video-recognition/video-recognition_2d_tensorrt_static-224x224.py is default as [1, 250, 3, 224, 224], while the shape of tests/data/arm_wrestling.mp4 is [1, 160, 3, 224, 224]. The shapes should be the same.

修改 [1, 250, 3, 224, 224][1, 160, 3, 224, 224] 后即可。

相关推荐
沫儿笙7 分钟前
安川YASKAWA焊接机器人电池拖盘焊接节气
人工智能·机器人
iiiiii117 分钟前
【论文阅读笔记】多实例学习方法 Diverse Density(DD):在特征空间中寻找正概念的坐标
论文阅读·人工智能·笔记·机器学习·ai·学习方法·多实例学习
RPA机器人就选八爪鱼10 分钟前
RPA财务机器人:驱动财务数字化转型的核心引擎
大数据·运维·人工智能·机器人·rpa
tianyuanwo13 分钟前
从机器人到软件管理:“具身”思维如何重塑我们的世界
人工智能·管理·具身
长不大的蜡笔小新27 分钟前
手写数字识别:从零搭建神经网络
人工智能·python·tensorflow
z***y8621 小时前
机器学习重点
人工智能·机器学习
AI人工智能+1 小时前
文档抽取技术:通过OCR、NLP和机器学习技术,将非结构化的合同、发票等文档转化为结构化数据
人工智能·计算机视觉·nlp·ocr·文档抽取
johnny2331 小时前
AI IDE/插件(三):Task Master、DeepCode
ide·人工智能
ConardLi1 小时前
前端程序员原地失业?全面实测 Gemini 3.0,附三个免费使用方法!
前端·人工智能·后端
w***Q3501 小时前
深度学习博客
人工智能·深度学习