【SOP】使用MMDeploy将MMAction2的模型转换为TensorRT

配置环境

执行一个MMAction2的Demo

执行 demo/demo.py ,并使用 tsm 配置文件。

bash 复制代码
python demo/demo.py "configs/recognition/tsm/tsm_imagenet-pretrained-r50_8xb16-1x1x16-50e_kinetics400-rgb.py" "../mmaction2 Ckpt/tsm_imagenet-pretrained-r50_8xb16-1x1x16-50e_kinetics400-rgb_20220831-042b1748.pth" "demo/demo.mp4" "tools/data/kinetics/label_map_k400.txt"

将Demo转为TensorRT

Clone the mmdeploy repo: git clone -b main https://github.com/open-mmlab/mmdeploy.git

假设当前路径是:

其中 Ckpt 存放了 .pth 文件,将要生成的 .onnx.engine 也会放在 Ckpt 中。.engine 就是转换好的 TensorRT 文件。

执行下面的指令完成TensorRT转换:

bash 复制代码
cd mmdeploy
python tools/deploy.py "configs/mmaction/video-recognition/video-recognition_2d_tensorrt_static-224x224.py" "../mmaction2/configs/recognition/tsm/tsm_imagenet-pretrained-r50_8xb16-1x1x16-50e_kinetics400-rgb.py" "../Ckpt/tsm_imagenet-pretrained-r50_8xb16-1x1x16-50e_kinetics400-rgb_20220831-042b1748.pth" "tests/data/arm_wrestling.mp4" --work-dir "../Ckpt/tsm_trt" --device cuda:0 --show --dump-info

会遇到报错:

Error Code 4: Internal Error (input: kMIN dimensions in profile 0 are [1,250,3,224,224] but input has static dimensions [1,160,3,224,224].)

Because the shape in mmdeploy/configs/mmaction/video-recognition/video-recognition_2d_tensorrt_static-224x224.py is default as [1, 250, 3, 224, 224], while the shape of tests/data/arm_wrestling.mp4 is [1, 160, 3, 224, 224]. The shapes should be the same.

修改 [1, 250, 3, 224, 224][1, 160, 3, 224, 224] 后即可。

相关推荐
HUIMU_13 分钟前
DAY12&DAY13-新世纪DL(Deeplearning/深度学习)战士:破(改善神经网络)1
人工智能·深度学习
致Great34 分钟前
DeepResearch开源与闭源方案对比
人工智能·chatgpt
黎燃1 小时前
AI驱动的供应链管理:需求预测实战指南
人工智能
天波信息技术分享1 小时前
AI云电脑盒子技术分析——从“盒子”到“算力云边缘节点”的跃迁
人工智能·电脑
CoderJia程序员甲1 小时前
GitHub 热榜项目 - 日榜(2025-08-16)
人工智能·ai·开源·github
KirkLin1 小时前
Kirk:练习时长两年半的AI Coding经验
人工智能·程序员·全栈
mit6.8241 小时前
[1Prompt1Story] 注意力机制增强 IPCA | 去噪神经网络 UNet | U型架构分步去噪
人工智能·深度学习·神经网络
挽淚2 小时前
(小白向)什么是Prompt,RAG,Agent,Function Calling和MCP ?
人工智能·程序员
Jina AI2 小时前
回归C++: 在GGUF上构建高效的向量模型
人工智能·算法·机器学习·数据挖掘·回归
Coovally AI模型快速验证2 小时前
YOLO、DarkNet和深度学习如何让自动驾驶看得清?
深度学习·算法·yolo·cnn·自动驾驶·transformer·无人机