【SOP】使用MMDeploy将MMAction2的模型转换为TensorRT

配置环境

执行一个MMAction2的Demo

执行 demo/demo.py ,并使用 tsm 配置文件。

bash 复制代码
python demo/demo.py "configs/recognition/tsm/tsm_imagenet-pretrained-r50_8xb16-1x1x16-50e_kinetics400-rgb.py" "../mmaction2 Ckpt/tsm_imagenet-pretrained-r50_8xb16-1x1x16-50e_kinetics400-rgb_20220831-042b1748.pth" "demo/demo.mp4" "tools/data/kinetics/label_map_k400.txt"

将Demo转为TensorRT

Clone the mmdeploy repo: git clone -b main https://github.com/open-mmlab/mmdeploy.git

假设当前路径是:

其中 Ckpt 存放了 .pth 文件,将要生成的 .onnx.engine 也会放在 Ckpt 中。.engine 就是转换好的 TensorRT 文件。

执行下面的指令完成TensorRT转换:

bash 复制代码
cd mmdeploy
python tools/deploy.py "configs/mmaction/video-recognition/video-recognition_2d_tensorrt_static-224x224.py" "../mmaction2/configs/recognition/tsm/tsm_imagenet-pretrained-r50_8xb16-1x1x16-50e_kinetics400-rgb.py" "../Ckpt/tsm_imagenet-pretrained-r50_8xb16-1x1x16-50e_kinetics400-rgb_20220831-042b1748.pth" "tests/data/arm_wrestling.mp4" --work-dir "../Ckpt/tsm_trt" --device cuda:0 --show --dump-info

会遇到报错:

Error Code 4: Internal Error (input: kMIN dimensions in profile 0 are [1,250,3,224,224] but input has static dimensions [1,160,3,224,224].)

Because the shape in mmdeploy/configs/mmaction/video-recognition/video-recognition_2d_tensorrt_static-224x224.py is default as [1, 250, 3, 224, 224], while the shape of tests/data/arm_wrestling.mp4 is [1, 160, 3, 224, 224]. The shapes should be the same.

修改 [1, 250, 3, 224, 224][1, 160, 3, 224, 224] 后即可。

相关推荐
老蒋新思维19 小时前
创客匠人峰会复盘:AI 时代知识变现,从流量思维到共识驱动的系统重构
大数据·人工智能·tcp/ip·重构·创始人ip·创客匠人·知识变现
shayudiandian20 小时前
用深度学习实现语音识别系统
人工智能·深度学习·语音识别
EkihzniY1 天前
AI+OCR:解锁数字化新视界
人工智能·ocr
东哥说-MES|从入门到精通1 天前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
铅笔侠_小龙虾1 天前
深度学习理论推导--梯度下降法
人工智能·深度学习
kaikaile19951 天前
基于遗传算法的车辆路径问题(VRP)解决方案MATLAB实现
开发语言·人工智能·matlab
lpfasd1231 天前
第1章_LangGraph的背景与设计哲学
人工智能
Aevget1 天前
界面组件Kendo UI for React 2025 Q3亮点 - AI功能全面提升
人工智能·react.js·ui·界面控件·kendo ui·ui开发
桜吹雪1 天前
LangChain.js/DeepAgents可观测性
javascript·人工智能
&&Citrus1 天前
【杂谈】SNNU公共计算平台:深度学习服务器配置与远程开发指北
服务器·人工智能·vscode·深度学习·snnu