数据准备与预处理
语音识别系统的核心是大量高质量的语音数据及其对应的文本标注。常见数据集包括LibriSpeech、TIMIT或Common Voice。原始音频通常为WAV格式,采样率16kHz,单声道。预处理步骤包括分帧(帧长25ms,帧移10ms)、加窗(汉明窗)、傅里叶变换提取频谱特征(如MFCCs或FBANK)。标准化操作需对特征进行均值方差归一化。
声学模型构建
现代语音识别主要采用端到端架构,如Conformer或Transformer模型。Conformer结合CNN的局部特征提取与Transformer的全局依赖建模能力。输入为80维FBANK特征,输出为字符或子词单元。模型结构示例:
python
class ConformerBlock(nn.Module):
def __init__(self, dim):
super().__init__()
self.ffn1 = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, dim*4),
nn.SiLU(),
nn.Dropout(0.1),
nn.Linear(dim*4, dim)
)
self.conv = nn.Conv1d(dim, dim, kernel_size=31, padding=15, groups=dim)
self.attention = nn.MultiheadAttention(dim, num_heads=8)
self.ffn2 = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, dim*4),
nn.SiLU(),
nn.Dropout(0.1),
nn.Linear(dim*4, dim)
)
语言模型集成
为提高识别准确率,需使用外部语言模型进行重打分。常用n-gram语言模型或基于Transformer的神经语言模型。训练时采用大量文本语料(如Wikipedia),推理时通过浅层融合或束搜索整合声学模型得分与语言模型得分。语言模型概率加权公式: [ \log P_{\text{total}}(y|x) = \log P_{\text{AM}}(y|x) + \lambda \log P_{\text{LM}}(y) + \gamma |y| ] 其中λ控制语言模型权重,γ调节输出长度惩罚。
解码与评估
采用束搜索算法进行序列解码,束宽通常设为5-10。评估指标使用词错误率(WER): [ \text{WER} = \frac{S + D + I}{N} \times 100% ] S为替换错误数,D为删除错误数,I为插入错误数,N为参考文本总词数。开源工具包如ESPnet或Kaldi提供完整评估流程。实时系统需优化推理速度,可采用量化、剪枝或知识蒸馏技术。