Hadoop如何进行分布式存储和处理大数据?

Hadoop是一个开源的分布式系统基础架构,它由多个组件组成,这些组件协同工作,以支持大规模数据集的存储和处理。本文是Hadoop如何进行分布式存储和处理大数据的详细说明:

一·Hadoop的核心组件:

1. Hadoop分布式文件系统(HDFS)Hadoop Distributed File System

HDFS是Hadoop的核心组件之一,它是一个高度可靠的分布式文件系统,设计用于跨成百上千台机器存储和处理PB级数据。

·NameNode:管理文件系统的元数据,如文件的名称、文件系统中的目录结构、文件到块的映射等。NameNode 以内存中的数据结构和磁盘上的文件(称为FSImage)来存储这些信息。

·DataNode:实际存储文件数据的节点。文件被分成一系列的数据块,并且这些数据块分散存储在集群中的多个DataNode上。

HDFS的特点包括:

是一个能够对大量数据进行分布式处理的软件框架。可靠,高效,可伸缩

  • 高容错性:通过数据块的多副本存储来实现,通常每个数据块有三个副本,存储在不同的节点上。

  • 高吞吐量:适合于批量数据访问,而不是低延迟的随机访问。

  • 适合大文件:HDFS优化了大文件的存储,因为它减少了元数据的存储需求。

2. MapReduce编程模型

MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行处理。它将大任务分解成小任务,这些小任务可以在多个节点上并行执行。MapReduce的工作流程通常包括两个阶段:

  • Map阶段:处理输入数据,生成中间键值对(key-value pairs)。

  • Reduce阶段:对Map阶段生成的中间键值对进行合并处理,生成最终结果。

3. YARN(Yet Another Resource Negotiator)

YARN是Hadoop的资源管理器,它负责管理和调度集群中的计算资源。YARN的主要组件包括:

  • ResourceManager:负责整个集群的资源管理和作业调度。

  • NodeManager:在每个节点上运行,负责管理单个节点的资源和任务执行。

  • ApplicationMaster:负责单个作业的生命周期管理,包括任务调度和监控。

其他组件:

非实时离线(批量)计算:

  • Hive:提供SQL风格的接口来执行MapReduce作业。

  • Pig:提供高级编程语言来编写MapReduce作业。

  • HBase:是一个分布式、可扩展的大数据存储,提供对大规模稀疏数据集的随机读/写访问

实时流式计算:

  • Spark:是一个快速、通用的分布式数据处理平台,支持多种数据处理任务,包括批处理、流处理、机器学习和图形处理。

-Storm:是一个开源的分布式实时计算系统,擅长处理海量数据流。Storm提供了低延迟的数据处理能力,适合于需要实时分析的场景。

二·Hadoop工作流程

1.客户端将文件上传到HDFS,文件被分割成多个块并储存在不同的Datanode上

2.用户编写Mapreduce作业来处理数据,作业被提交给ResourceManager

3.ResourceManager将作业分配给nodemanager执行,nodemanager在datanode上或者靠近数据的节点上启动容器来执行map和reduce任务

4.Map任务处理输入数据块,生成中间键值对,然后由Reduce任务进一步处理,最终输出结果。处理的结果可以写回HDFS,或者写入其他储存系统

随着时间的推移,Hadoop已经成为大数据技术栈的核心部分,并且与其他技术和工具(如Spark、Flink等)一起,形成了一个庞大的生态系统,用于处理和分析大规模数据集。

三·Hadoop存在较为明显的缺点:

·生态系统复杂性:Hadoop有大量的组件和工具,这些组件的集成和管理可能相当复杂,需要专业知识和经验。

·不适合低延迟数据访问:Hadoop的设计主要是为了处理大规模数据集的批处理,而不是为了支持需要快速响应的实时查询或交互式应用。

·存储大量小文件效率低:Hadoop的文件系统(HDFS)在存储大量小文件时效率不高,因为每个文件和目录的信息都需要存储在NameNode的内存中,这会导致内存消耗过大,并可能影响性能。

·不支持文件随机修改:HDFS设计为只支持数据的追加,不支持文件的随机写入或修改,这限制了它的使用场景。

·学习和维护成本高:由于Hadoop的复杂性,学习和维护成本相对较高。对于没有足够资源或专业知识的组织来说,这可能是一个挑战。

推荐:

FineDataLink------中国领先的低代码/高时效数据治理工具,能过为企业提供一站式的数据服务,能够快速连接、高时效融合多种数据.

FineDataLink相较于Hadoop的优点:

实时数据处理:FineDataLink支持实时数据同步,能够基于CDC、logminer、binlog等技术进行数据的实时同步,而Hadoop主要擅长批量数据处理。

用户界面:FineDataLink提供友好的用户界面,使得数据处理任务的创建、管理和监控更加直观方便。

简化的ETL过程:FineDataLink简化了数据抽取、转换和加载(ETL)的过程,使得用户即使不具备深厚的技术背景也能快速上手。

高时效融合:FineDataLink能够快速连接和融合多种数据源,提供灵活的ETL数据开发能力。

统一的运维平台:FineDataLink提供了统一的运维平台,可以方便地监控任务运行状态,并在任务出现问题时进行统一的消息通知,如邮件、企业微信等。

数据集成:FineDataLink不仅支持数据的实时同步和离线处理,还能够将处理后的数据通过API接口发布,便于与其他应用集成。

总的来说,FineDataLink在用户界面、实时数据处理、ETL过程简化、运维管理等方面相较于Hadoop具有一定的优势,尤其适合需要实时数据处理和数据集成的场景。

免费试用、获取更多信息,点击了解更多>>>************体验FDL功能****************

了解更多数据集成和处理相关干货内容请关注>>>************FineDataLink官网****************

相关推荐
爬山算法15 小时前
Redis(73)如何处理Redis分布式锁的死锁问题?
数据库·redis·分布式
IT小哥哥呀16 小时前
电池制造行业数字化实施
大数据·制造·智能制造·数字化·mom·电池·信息化
Xi xi xi16 小时前
苏州唯理科技近期也正式发布了国内首款神经腕带产品
大数据·人工智能·经验分享·科技
yumgpkpm17 小时前
华为鲲鹏 Aarch64 环境下多 Oracle 、mysql数据库汇聚到Cloudera CDP7.3操作指南
大数据·数据库·mysql·华为·oracle·kafka·cloudera
祈祷苍天赐我java之术17 小时前
Redis 数据类型与使用场景
java·开发语言·前端·redis·分布式·spring·bootstrap
UMI赋能企业17 小时前
制造业流程自动化提升生产力的全面分析
大数据·人工智能
TDengine (老段)18 小时前
TDengine 数学函数 FLOOR 用户手册
大数据·数据库·物联网·时序数据库·iot·tdengine·涛思数据
猫林老师20 小时前
HarmonyOS线程模型与性能优化实战
数据库·分布式·harmonyos
派可数据BI可视化20 小时前
商业智能BI 浅谈数据孤岛和数据分析的发展
大数据·数据库·数据仓库·信息可视化·数据挖掘·数据分析
jiedaodezhuti21 小时前
Flink性能调优基石:资源配置与内存优化实践
大数据·flink