COMP 6714-Info Retrieval and Web Search笔记week1

哭了哭了,这周唯一能听懂的就这门

目录

  • [IR(Information Retrieval)是什么?](#IR(Information Retrieval)是什么?)
  • IR的基本假设
  • [Unstructured (text) vs. structured](#Unstructured (text) vs. structured)
  • [Documents vs. Database Records](#Documents vs. Database Records)
  • [比较文本(Comparing Text)](#比较文本(Comparing Text))
  • [IR的范围(Dimensions of IR)](#IR的范围(Dimensions of IR))
  • [IR的任务(IR Task)](#IR的任务(IR Task))
  • [IR的大问题(Big Issues in IR)](#IR的大问题(Big Issues in IR))
  • [Unranked retrieval evaluation:](#Unranked retrieval evaluation:)

IR(Information Retrieval)是什么?

不等同于search,不是做数据查询(database query)

The field of computer science that is most involved with R&D(research and development) for search is information retrieval (IR)

  • finding material(doctuments)
  • 无结构 unstructured nature
  • 大集合 an information need within large collection

IR的基本假设

  • 集合(Collection) :一组文档,静态的(a static collection for the moment)
  • 目标(Goal) :检索与用户需要的信息相关的文档(retrieve documents with information that is relevant to the user's information
    need
    and helps the user complete a task)

Unstructured (text) vs. structured

market cap 市场总值

90年代中期,大部分数据是非结构化的,而在行业里,大部分的钱都在结构化数据库上。如oracle、Microsoft SQL Server、IBM database、DB2

而到了2019年的时候,非结构数据更多了,在非结构化数据上花的钱也比结构化数据更多了(如chatgpt)

这让信息检索比以前更重要了

Documents vs. Database Records

数据库记录(或关系数据库中的元组tuple)通常由定义良好的字段field(或属性attribute)组成。数据库( fields with well-defined semantics)查询很容易,文本(text or documents)较难。

比较文本(Comparing Text)

将查询文本(query text)与文档文本(document text)进行比较,确定什么是好的匹配,是信息检索的核心问题(core issue)。

IR的范围(Dimensions of IR)

IR不仅仅是文本和网络搜索(虽然在这门课上是核心)

IR的任务(IR Task)

  • 动态查询(Ad-hoc search):查找任意文本(arbitrary text)查询的相关文档
  • 筛选(Filtering):又名信息传播(aka information dissemination),为新文档识别相关用户的profile(比如你告诉你的社交媒体你喜欢动漫,它可能以后会给你推这方面的)
  • 分类(Classification):识别文档相关的标签
  • 问题回答(Question answering):对问题给出一个具体的答案

IR的大问题(Big Issues in IR)

相关性(relevance)

  • 话题相关(Topical relevance):same topic,不用管用户
  • 用户相关(User relevance):用户说相关它就相关
    所以话题相关更容易满足
  • 检索模型(Retrieval model): 定义相关性的形式(define a view of relevance),比如boolean retrieval是binary的,要么对要么不对
  • 排序算法(Ranking algorithms ):基于检索模型,如矢量模型(vector model)、概率模型(probability model)
  • 大部分模型描述文本的统计属性(statistical properties)而不是语言属性(linguistic properties)

评估(Evaluation)

  • 比较系统输出(system output)与用户期望(user expectations)的实验程序和措施
  • 召回率(Recall)和准确率(precision) 是有效度量的两个例子

Unranked retrieval evaluation:

accuracy不是信息检索的词,accuracy很误导,我们不用accuracy来衡量信息检索而是Precision和Recall

  • Precision :fraction of retrieved docs that are relevant = P (relevant|retrieved)
    你搜索到的有多少是正确的样本?
  • Recall :fraction of relevant docs that are retrieved = P (retrieved|relevant)
    在正确的样本中有多少正确的样本被搜索到了?
    所以一个是关于retrieve,另一个是关于collection
    • tp:true positive(相关,并且搜索到了)
    • fp:false positive
    • fn:false negative
    • tn:true negative(不相关,并且没搜索到)
      all the true are good stuff, all the false you don't like
相关推荐
Ccjf酷儿10 分钟前
操作系统 蒋炎岩 3.硬件视角的操作系统
笔记
习习.y38 分钟前
python笔记梳理以及一些题目整理
开发语言·笔记·python
撸码猿1 小时前
《Python AI入门》第10章 拥抱AIGC——OpenAI API调用与Prompt工程实战
人工智能·python·aigc
qq_386218991 小时前
Gemini生成的自动搜索和下载论文的python脚本
开发语言·python
vx_vxbs661 小时前
【SSM电影网站】(免费领源码+演示录像)|可做计算机毕设Java、Python、PHP、小程序APP、C#、爬虫大数据、单片机、文案
java·spring boot·python·mysql·小程序·php·idea
在逃热干面1 小时前
(笔记)自定义 systemd 服务
笔记
DKPT2 小时前
ZGC和G1收集器相比哪个更好?
java·jvm·笔记·学习·spring
烤汉堡3 小时前
Python入门到实战:post请求+cookie+代理
爬虫·python
luod3 小时前
Python异常链
python
我不是QI4 小时前
周志华《机器学习---西瓜书》 一
人工智能·python·机器学习·ai