分享一些成功的 SQL 优化案例

案例一:电商平台订单查询优化

背景

一家电商企业的数据库中存储了大量的订单数据,随着业务的增长,订单查询的响应时间越来越长,影响了客服人员处理订单查询以及生成报表的效率。

原始 SQL 查询语句

sql

SELECT o.order_id, o.customer_id, o.order_date, od.product_id, od.quantity, od.price
FROM orders o
JOIN order_details od ON o.order_id = od.order_id
WHERE o.order_date BETWEEN '2024-01-01' AND '2024-09-02';

分析问题

  • 没有合适的索引:最初的数据库表结构中,orders 表的 order_date 列和 order_details 表的 order_id 列上没有创建合适的索引,导致在进行日期范围查询和连接操作时,数据库需要进行全表扫描。
  • 数据量大:经过一段时间的运营,订单数据量已经增长到数百万条,全表扫描的时间成本非常高。

优化措施

  • 创建索引:在 orders 表的 order_date 列上创建索引,以便快速筛选出符合日期范围的订单。在 order_details 表的 order_id 列上创建索引,提高连接操作的效率。

sql

CREATE INDEX idx_order_date ON orders(order_date);
CREATE INDEX idx_order_id ON order_details(order_id);
  • 优化查询语句:使用更明确的连接条件和筛选条件,避免不必要的数据返回。例如,只选择需要的列,而不是使用 SELECT *

sql

SELECT o.order_id, o.customer_id, o.order_date, od.product_id, od.quantity, od.price
FROM orders o
INNER JOIN order_details od ON o.order_id = od.order_id
WHERE o.order_date >= '2024-01-01' AND o.order_date <= '2024-09-02'
AND o.status = 'completed';  -- 添加了订单状态筛选条件

优化效果

查询响应时间从原来的几十秒缩短到了几秒钟,大大提高了客服人员和数据分析师的工作效率。

案例二:社交媒体平台用户活动查询优化

背景

一个社交媒体平台需要统计用户在一段时间内的点赞、评论和分享等活动数据,以便进行用户行为分析和内容推荐。但是,原始的查询语句执行非常缓慢,影响了数据分析的及时性。

原始 SQL 查询语句

sql

SELECT u.user_id, u.username, 
       COUNT(l.like_id) AS like_count,
       COUNT(c.comment_id) AS comment_count,
       COUNT(s.share_id) AS share_count
FROM users u
LEFT JOIN likes l ON u.user_id = l.user_id
LEFT JOIN comments c ON u.user_id = c.user_id
LEFT JOIN shares s ON u.user_id = s.user_id
WHERE u.last_active_date BETWEEN '2024-08-01' AND '2024-09-02'
GROUP BY u.user_id, u.username;

分析问题

  • 大量的连接操作:原始查询语句中使用了多个左连接来关联用户表和点赞、评论、分享表,这在数据量大的情况下会导致大量的中间结果集和复杂的连接计算。
  • 缺乏合适的索引:用户表的 last_active_date 列和关联表的 user_id 列上没有索引,导致在进行筛选和连接时效率低下。

优化措施

  • 分解查询:将一个复杂的查询分解为多个简单的子查询,先分别计算点赞、评论和分享的数量,然后再与用户表进行合并。

sql

-- 计算点赞数量的子查询
SELECT user_id, COUNT(like_id) AS like_count
FROM likes
WHERE create_date BETWEEN '2024-08-01' AND '2024-09-02'
GROUP BY user_id;

-- 计算评论数量的子查询
SELECT user_id, COUNT(comment_id) AS comment_count
FROM comments
WHERE create_date BETWEEN '2024-08-01' AND '2024-09-02'
GROUP BY user_id;

-- 计算分享数量的子查询
SELECT user_id, COUNT(share_id) AS share_count
FROM shares
WHERE create_date BETWEEN '2024-08-01' AND '2024-09-02'
GROUP BY user_id;

-- 将子查询结果与用户表合并
SELECT u.user_id, u.username, l.like_count, c.comment_count, s.share_count
FROM users u
LEFT JOIN (
    SELECT user_id, COUNT(like_id) AS like_count
    FROM likes
    WHERE create_date BETWEEN '2024-08-01' AND '2024-09-02'
    GROUP BY user_id
) l ON u.user_id = l.user_id
LEFT JOIN (
    SELECT user_id, COUNT(comment_id) AS comment_count
    FROM comments
    WHERE create_date BETWEEN '2024-08-01' AND '2024-09-02'
    GROUP BY user_id
) c ON u.user_id = c.user_id
LEFT JOIN (
    SELECT user_id, COUNT(share_id) AS share_count
    FROM shares
    WHERE create_date BETWEEN '2024-08-01' AND '2024-09-02'
    GROUP BY user_id
) s ON u.user_id = s.user_id
WHERE u.last_active_date BETWEEN '2024-08-01' AND '2024-09-02';
  • 创建索引:在用户表的 last_active_date 列以及点赞、评论、分享表的 user_idcreate_date 列上创建索引。

sql

CREATE INDEX idx_users_last_active_date ON users(last_active_date);
CREATE INDEX idx_likes_user_id ON likes(user_id);
CREATE INDEX idx_likes_create_date ON likes(create_date);
CREATE INDEX idx_comments_user_id ON comments(user_id);
CREATE INDEX idx_comments_create_date ON comments(create_date);
CREATE INDEX idx_shares_user_id ON shares(user_id);
CREATE INDEX idx_shares_create_date ON shares(create_date);

优化效果

查询执行时间从原来的几分钟缩短到了十几秒钟,使得数据分析人员能够更及时地获取用户活动数据,为平台的运营决策提供了有力支持。


了解更多跨境独立站电商代购系统和国内外电商API,可以私信或评论区交流 ,感谢你的关注。

相关推荐
人间打气筒(Ada)16 分钟前
MySQL优化
数据库·mysql
HealthScience28 分钟前
【异常错误】pycharm debug view变量的时候显示不全,中间会以...显示
ide·python·pycharm
小蒜学长1 小时前
医疗报销系统的设计与实现(代码+数据库+LW)
数据库·spring boot·学习·oracle·课程设计
终端行者1 小时前
kubernetes1.28部署mysql5.7主从同步,使用Nfs制作持久卷存储,适用于centos7/9操作系统,
数据库·容器·kubernetes
羊小猪~~1 小时前
MYSQL学习笔记(九):MYSQL表的“增删改查”
数据库·笔记·后端·sql·学习·mysql·考研
我们的五年1 小时前
MySQL 架构
数据库·mysql·开源
豌豆花下猫1 小时前
Python 潮流周刊#90:uv 一周岁了,优缺点分析(摘要)
后端·python·ai
yuanbenshidiaos1 小时前
【数据挖掘】数据仓库
数据仓库·笔记·数据挖掘
橘猫云计算机设计2 小时前
基于SSM的《计算机网络》题库管理系统(源码+lw+部署文档+讲解),源码可白嫖!
java·数据库·spring boot·后端·python·计算机网络·毕设
小伍_Five2 小时前
从0开始:OpenCV入门教程【图像处理基础】
图像处理·python·opencv