P6149 [USACO20FEB] Triangles S题解

P6149 [USACO20FEB] Triangles S

[USACO20FEB] Triangles S

题目描述

Farmer John 想要给他的奶牛们建造一个三角形牧场。

有 N N N( 3 ≤ N ≤ 1 0 5 3\leq N\leq 10^5 3≤N≤105)个栅栏柱子分别位于农场的二维平面上不同的点 ( X 1 , Y 1 ) ... ( X N , Y N ) (X_1,Y_1)\ldots (X_N,Y_N) (X1,Y1)...(XN,YN)。他可以选择其中三个点组成三角形牧场,只要三角形有一条边与 x x x 轴平行,且有另一条边与 y y y 轴平行。

FJ 可以组成的所有可能的牧场的面积之和等于多少?

输入格式

第一行包含 N N N。

以下 N N N 行每行包含两个整数 X i X_i Xi 和 Y i Y_i Yi,均在范围 − 1 0 4 ... 1 0 4 −10^4\ldots 10^4 −104...104 之内,描述一个栅栏柱子的位置。

输出格式

由于面积之和不一定为整数且可能非常大,输出面积之和的两倍 模 1 0 9 + 7 10^9+7 109+7 的余数。

样例 #1

样例输入 #1

4
0 0
0 1
1 0
1 2

样例输出 #1

3

提示

样例解释:

栅栏木桩 ( 0 , 0 0,0 0,0)、( 1 , 0 1,0 1,0) 和 ( 1 , 2 1,2 1,2) 组成了一个面积为 1 1 1 的三角形,( 0 , 0 0,0 0,0)、( 1 , 0 1,0 1,0) 和 ( 0 , 1 0,1 0,1) 组成了一个面积为 0.5 0.5 0.5 的三角形。所以答案为 2 × ( 1 + 0.5 ) = 3 2\times (1+0.5)=3 2×(1+0.5)=3。

子任务:
  • 测试点 2 2 2 满足 N = 200 N=200 N=200。
  • 测试点 3 3 3- 4 4 4 满足 N ≤ 5000 N\leq 5000 N≤5000。
  • 测试点 5 5 5- 10 10 10 没有额外限制。

题解

首先考虑只统计直角顶点在右上角的三角形。

对于每个点,它的贡献是它正左边的点到该点的长度和乘以正下方的点到该点的长度和。

对于所有的点,按照 X X X为第一关键字, Y Y Y为第二关键字排序。

对于左边的点,开一个桶统计总数。对于下边的点同理。

那么对于直角顶点不在右上角的三角形呢?

我们只用将所有的点绕原点旋转 90 ° 90° 90°后再统计即可,总共旋转三次

时间复杂度 O ( N ) O(N) O(N)

AC代码

cpp 复制代码
#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 100005
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
int n;
struct node{
	int x,y;
	bool operator<(const node o)const{
		if(x^o.x)return x<o.x;
		return y<o.y;
	}
}a[N];
typedef long long ll;
ll ans=0;const ll P = 1000000007LL;const int bas = 10007;
ll sum[N],cnt[N];
void solve(){
	sort(a+1,a+n+1);
	memset(sum,0,sizeof(sum));
	memset(cnt,0,sizeof(cnt));
	ll now = 0,tot = 0 ;
	rep( i , 1 , n ){
		if(a[i].x != a[i-1].x )now = 0 ,tot = 0 ;
		ans=(ans + ( a[i].x * cnt[a[i].y + bas] - sum[ a[i].y + bas ] )
		    % P * ( a[i].y * tot - now ) % P ) % P;
		tot++;now=(now+a[i].y)%P;
		cnt[a[i].y+bas]++;
		sum[a[i].y+bas]=(a[i].x+sum[a[i].y+bas])%P;
	}
}
void rev(){
	rep(i,1,n){
		int x=a[i].x,y=a[i].y;
		a[i].x=y;a[i].y=-x;
	}
}
int main(int argc, const char * argv[]){
	scanf("%d",&n);
	rep(i,1,n)scanf("%d%d",&a[i].x,&a[i].y);
	rep(i,0,3){
		solve();rev();
	}
	printf("%lld\n",ans);
	return 0;
}
//Written by Kevin ☑
相关推荐
黑龙江亿林等保1 分钟前
深入探索哈尔滨二级等保下的负载均衡SLB及其核心算法
运维·算法·负载均衡
lucy153027510794 分钟前
【青牛科技】GC5931:工业风扇驱动芯片的卓越替代者
人工智能·科技·单片机·嵌入式硬件·算法·机器学习
杜杜的man20 分钟前
【go从零单排】迭代器(Iterators)
开发语言·算法·golang
小沈熬夜秃头中୧⍤⃝37 分钟前
【贪心算法】No.1---贪心算法(1)
算法·贪心算法
木向1 小时前
leetcode92:反转链表||
数据结构·c++·算法·leetcode·链表
阿阿越1 小时前
算法每日练 -- 双指针篇(持续更新中)
数据结构·c++·算法
skaiuijing1 小时前
Sparrow系列拓展篇:对调度层进行抽象并引入IPC机制信号量
c语言·算法·操作系统·调度算法·操作系统内核
Star Patrick2 小时前
算法训练(leetcode)二刷第十九天 | *39. 组合总和、*40. 组合总和 II、*131. 分割回文串
python·算法·leetcode
武子康3 小时前
大数据-214 数据挖掘 机器学习理论 - KMeans Python 实现 算法验证 sklearn n_clusters labels
大数据·人工智能·python·深度学习·算法·机器学习·数据挖掘
pianmian18 小时前
python数据结构基础(7)
数据结构·算法