P6149 [USACO20FEB] Triangles S题解

P6149 [USACO20FEB] Triangles S

[USACO20FEB] Triangles S

题目描述

Farmer John 想要给他的奶牛们建造一个三角形牧场。

有 N N N( 3 ≤ N ≤ 1 0 5 3\leq N\leq 10^5 3≤N≤105)个栅栏柱子分别位于农场的二维平面上不同的点 ( X 1 , Y 1 ) ... ( X N , Y N ) (X_1,Y_1)\ldots (X_N,Y_N) (X1,Y1)...(XN,YN)。他可以选择其中三个点组成三角形牧场,只要三角形有一条边与 x x x 轴平行,且有另一条边与 y y y 轴平行。

FJ 可以组成的所有可能的牧场的面积之和等于多少?

输入格式

第一行包含 N N N。

以下 N N N 行每行包含两个整数 X i X_i Xi 和 Y i Y_i Yi,均在范围 − 1 0 4 ... 1 0 4 −10^4\ldots 10^4 −104...104 之内,描述一个栅栏柱子的位置。

输出格式

由于面积之和不一定为整数且可能非常大,输出面积之和的两倍 模 1 0 9 + 7 10^9+7 109+7 的余数。

样例 #1

样例输入 #1

复制代码
4
0 0
0 1
1 0
1 2

样例输出 #1

复制代码
3

提示

样例解释:

栅栏木桩 ( 0 , 0 0,0 0,0)、( 1 , 0 1,0 1,0) 和 ( 1 , 2 1,2 1,2) 组成了一个面积为 1 1 1 的三角形,( 0 , 0 0,0 0,0)、( 1 , 0 1,0 1,0) 和 ( 0 , 1 0,1 0,1) 组成了一个面积为 0.5 0.5 0.5 的三角形。所以答案为 2 × ( 1 + 0.5 ) = 3 2\times (1+0.5)=3 2×(1+0.5)=3。

子任务:
  • 测试点 2 2 2 满足 N = 200 N=200 N=200。
  • 测试点 3 3 3- 4 4 4 满足 N ≤ 5000 N\leq 5000 N≤5000。
  • 测试点 5 5 5- 10 10 10 没有额外限制。

题解

首先考虑只统计直角顶点在右上角的三角形。

对于每个点,它的贡献是它正左边的点到该点的长度和乘以正下方的点到该点的长度和。

对于所有的点,按照 X X X为第一关键字, Y Y Y为第二关键字排序。

对于左边的点,开一个桶统计总数。对于下边的点同理。

那么对于直角顶点不在右上角的三角形呢?

我们只用将所有的点绕原点旋转 90 ° 90° 90°后再统计即可,总共旋转三次

时间复杂度 O ( N ) O(N) O(N)

AC代码

cpp 复制代码
#include<cstdio>
#include<algorithm>
#include<cstring>
#define N 100005
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
int n;
struct node{
	int x,y;
	bool operator<(const node o)const{
		if(x^o.x)return x<o.x;
		return y<o.y;
	}
}a[N];
typedef long long ll;
ll ans=0;const ll P = 1000000007LL;const int bas = 10007;
ll sum[N],cnt[N];
void solve(){
	sort(a+1,a+n+1);
	memset(sum,0,sizeof(sum));
	memset(cnt,0,sizeof(cnt));
	ll now = 0,tot = 0 ;
	rep( i , 1 , n ){
		if(a[i].x != a[i-1].x )now = 0 ,tot = 0 ;
		ans=(ans + ( a[i].x * cnt[a[i].y + bas] - sum[ a[i].y + bas ] )
		    % P * ( a[i].y * tot - now ) % P ) % P;
		tot++;now=(now+a[i].y)%P;
		cnt[a[i].y+bas]++;
		sum[a[i].y+bas]=(a[i].x+sum[a[i].y+bas])%P;
	}
}
void rev(){
	rep(i,1,n){
		int x=a[i].x,y=a[i].y;
		a[i].x=y;a[i].y=-x;
	}
}
int main(int argc, const char * argv[]){
	scanf("%d",&n);
	rep(i,1,n)scanf("%d%d",&a[i].x,&a[i].y);
	rep(i,0,3){
		solve();rev();
	}
	printf("%lld\n",ans);
	return 0;
}
//Written by Kevin ☑
相关推荐
清铎6 分钟前
leetcode_day12_滑动窗口_《绝境求生》
python·算法·leetcode·动态规划
linweidong11 分钟前
嵌入式电机:如何在低速和高负载状态下保持FOC(Field-Oriented Control)算法的电流控制稳定?
stm32·单片机·算法
net3m3326 分钟前
单片机屏幕多级菜单系统之当前屏幕号+屏幕菜单当前深度 机制
c语言·c++·算法
mmz120726 分钟前
二分查找(c++)
开发语言·c++·算法
Insight38 分钟前
拒绝手动 Copy!一文吃透 PyTorch/NumPy 中的广播机制 (Broadcasting)
算法
CoovallyAIHub1 小时前
工业视觉检测:多模态大模型的诱惑
深度学习·算法·计算机视觉
Jayden_Ruan1 小时前
C++分解质因数
数据结构·c++·算法
bubiyoushang8882 小时前
MATLAB实现雷达恒虚警检测
数据结构·算法·matlab
wu_asia2 小时前
编程技巧:如何高效输出特定倍数数列
c语言·数据结构·算法
AlenTech2 小时前
207. 课程表 - 力扣(LeetCode)
算法·leetcode·职场和发展