中级练习[6]:Hive SQL订单配送与用户社交行为分析

目录

[1. 即时订单比例](#1. 即时订单比例)

[1.1 题目需求](#1.1 题目需求)

[1.2 代码实现](#1.2 代码实现)

[2. 向用户推荐朋友收藏的商品](#2. 向用户推荐朋友收藏的商品)

[2.1 题目需求](#2.1 题目需求)

[2.2 代码实现](#2.2 代码实现)

[3. 查询所有用户的连续登录两天及以上的日期区间](#3. 查询所有用户的连续登录两天及以上的日期区间)

[3.1 题目需求](#3.1 题目需求)

[3.2 代码实现](#3.2 代码实现)


1. 即时订单比例

1.1 题目需求

从配送信息表(delivery_info)中求出每个用户的首单(用户的第一个订单)中即时订单的比例,并保留两位小数,以小数形式显示。即时订单是指期望配送日期和下单日期相同的订单,而计划订单是指期望配送日期和下单日期不同的订单。

期望结果如下:

percentage
0.5
1.2 代码实现
sql 复制代码
hive>
select
    round(sum(if(order_date=custom_date,1,0))/count(*),2) percentage
from
(
    select
        delivery_id,
        user_id,
        order_date,
        custom_date,
        row_number() over (partition by user_id order by order_date) rn
    from delivery_info
)t1
where rn=1;

2. 向用户推荐朋友收藏的商品

2.1 题目需求

从好友关系表(friendship_info)和收藏表(favor_info)中查询出应向哪位用户推荐哪些商品。推荐的商品应该是用户的朋友已收藏但用户自己尚未收藏的商品。

1)部分结果展示

user_id sku_id
101 2
101 4
101 7
101 9
101 8
101 11
101 1

2)完整结果

user_id sku_id
101 2
101 4
101 7
... ...
2.2 代码实现
sql 复制代码
hive>
select
    distinct t1.user_id,
    friend_favor.sku_id
from
(
    select
        user1_id user_id,
        user2_id friend_id
    from friendship_info
    union
    select
        user2_id,
        user1_id
    from friendship_info
)t1
left join favor_info friend_favor
on t1.friend_id=friend_favor.user_id
left join favor_info user_favor
on t1.user_id=user_favor.user_id
and friend_favor.sku_id=user_favor.sku_id
where user_favor.sku_id is null;

3. 查询所有用户的连续登录两天及以上的日期区间

3.1 题目需求

从登录明细表(user_login_detail)中查询出所有用户的连续登录两天及以上的日期区间,以登录时间(login_ts)为准。

期望结果如下:

user_id start_date end_date
101 2021-09-27 2021-09-30
102 2021-10-01 2021-10-02
106 2021-10-04 2021-10-05
107 2021-10-05 2021-10-06
3.2 代码实现
sql 复制代码
hive>
select user_id,
       min(login_date) start_date,
       max(login_date) end_date
from (
         select user_id,
                login_date,
                date_sub(login_date, rn) flag
         from (
                  select user_id,
                         login_date,
                         row_number() over (partition by user_id order by login_date) rn
                  from (
                           select user_id,
                                  date_format(login_ts, 'yyyy-MM-dd') login_date
                           from user_login_detail
                           group by user_id, date_format(login_ts, 'yyyy-MM-dd')
                       ) t1
              ) t2
     ) t3
group by user_id, flag
having count(*) >= 2
相关推荐
PersistJiao1 小时前
在 Spark RDD 中,sortBy 和 top 算子的各自适用场景
大数据·spark·top·sortby
2301_811274311 小时前
大数据基于Spring Boot的化妆品推荐系统的设计与实现
大数据·spring boot·后端
Yz98761 小时前
hive的存储格式
大数据·数据库·数据仓库·hive·hadoop·数据库开发
青云交1 小时前
大数据新视界 -- 大数据大厂之 Hive 数据导入:多源数据集成的策略与实战(上)(3/ 30)
大数据·数据清洗·电商数据·数据整合·hive 数据导入·多源数据·影视娱乐数据
lzhlizihang1 小时前
python如何使用spark操作hive
hive·python·spark
武子康1 小时前
大数据-230 离线数仓 - ODS层的构建 Hive处理 UDF 与 SerDe 处理 与 当前总结
java·大数据·数据仓库·hive·hadoop·sql·hdfs
武子康1 小时前
大数据-231 离线数仓 - DWS 层、ADS 层的创建 Hive 执行脚本
java·大数据·数据仓库·hive·hadoop·mysql
时差9532 小时前
Flink Standalone集群模式安装部署
大数据·分布式·flink·部署
锵锵锵锵~蒋2 小时前
实时数据开发 | 怎么通俗理解Flink容错机制,提到的checkpoint、barrier、Savepoint、sink都是什么
大数据·数据仓库·flink·实时数据开发
二进制_博客2 小时前
Flink学习连载文章4-flink中的各种转换操作
大数据·学习·flink