OpenCV运动分析和目标跟踪(1)累积操作函数accumulate()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

将一个图像添加到累积图像中。

该函数将 src 或其部分元素添加到 dst 中:
dst ( x , y ) ← dst ( x , y ) + src ( x , y ) if mask ( x , y ) ≠ 0 \texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0 dst(x,y)←dst(x,y)+src(x,y)ifmask(x,y)=0

该函数支持多通道图像。每个通道独立处理。

cv::accumulate 函数可以用于收集由静止相机拍摄的场景背景的统计数据,并用于进一步的前景-背景分割。

函数原型

cpp 复制代码
void cv::accumulate	
(
	InputArray 	src,
	InputOutputArray 	dst,
	InputArray 	mask = noArray() 
)	

参数

  • 参数src 输入图像,类型为 CV_8UC(n),CV_16UC(n),CV_32FC(n) 或 CV_64FC(n),其中 n 是一个正整数。

  • 参数dst 累积图像,与输入图像具有相同数量的通道,并且深度为 CV_32F 或 CV_64F。

  • 参数mask 可选的操作掩码。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载一个真实的图像
    cv::Mat sourceImage = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/sun2.jpg", cv::IMREAD_COLOR );
    if ( sourceImage.empty() )
    {
        std::cout << "Error loading image" << std::endl;
        return -1;
    }

    // 获取源图像的尺寸和通道数
    cv::Size imageSize = sourceImage.size();
    int numChannels = sourceImage.channels();

    // 输出源图像的尺寸和类型
    std::cout << "Source Image Size: " << imageSize << std::endl;
    std::cout << "Source Image Type: " << sourceImage.type() << std::endl;
    std::cout << "Source Image Channels: " << numChannels << std::endl;

    // 创建一个空的累积图像
    cv::Mat cumulativeImage = cv::Mat::zeros(imageSize, CV_32FC(numChannels)); // 累积图像类型为 CV_32FC3

    // 输出累积图像的尺寸和类型
    std::cout << "Cumulative Image Size: " << cumulativeImage.size() << std::endl;
    std::cout << "Cumulative Image Type: " << cumulativeImage.type() << std::endl;
    std::cout << "Cumulative Image Channels: " << cumulativeImage.channels() << std::endl;

    // 将源图像转换为浮点类型
    cv::Mat sourceImageFloat;
    sourceImage.convertTo(sourceImageFloat, CV_32FC(numChannels), 1.0 / 255.0);

    // 输出转换后的图像尺寸和类型
    std::cout << "Converted Image Size: " << sourceImageFloat.size() << std::endl;
    std::cout << "Converted Image Type: " << sourceImageFloat.type() << std::endl;
    std::cout << "Converted Image Channels: " << sourceImageFloat.channels() << std::endl;

    // 创建一个掩码图像
    cv::Mat mask = cv::Mat::ones(imageSize, CV_8U) * 255; // 全部像素为255,即不使用掩码

    // 输出掩码图像的尺寸和类型
    std::cout << "Mask Image Size: " << mask.size() << std::endl;
    std::cout << "Mask Image Type: " << mask.type() << std::endl;

    // 确保累积图像和源图像的尺寸一致
    if (cumulativeImage.rows != sourceImageFloat.rows || cumulativeImage.cols != sourceImageFloat.cols) {
        std::cout << "Error: Cumulative image and source image do not have the same size." << std::endl;
        return -1;
    }

    // 确保累积图像和源图像的通道数一致
    if (cumulativeImage.channels() != sourceImageFloat.channels()) {
        std::cout << "Error: Cumulative image and source image do not have the same number of channels." << std::endl;
        return -1;
    }

    // 累积源图像到累积图像中
    int numAccumulations = 100; // 增加累加次数
    for (int i = 0; i < numAccumulations; ++i) {
        cv::accumulate(sourceImageFloat, cumulativeImage, mask);
    }

    // 显示累积图像
    cv::Mat normalizedCumulativeImage;
    cv::normalize(cumulativeImage, normalizedCumulativeImage, 0, 255, cv::NORM_MINMAX, CV_8U);

    // 使用高对比度的色彩映射
    cv::Mat enhancedCumulativeImage;
    cv::applyColorMap(normalizedCumulativeImage, enhancedCumulativeImage, cv::COLORMAP_JET);

    cv::imshow("Original Image", sourceImage);
    cv::imshow("Cumulative Image", enhancedCumulativeImage);
    
    cv::waitKey( 0 );
    return 0;
}

运行结果

相关推荐
迅易科技11 分钟前
借助腾讯云质检平台的新范式,做工业制造企业质检的“AI慧眼”
人工智能·视觉检测·制造
古希腊掌管学习的神1 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI2 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长2 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME3 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室4 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself4 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董4 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee4 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa4 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai