道路裂缝,坑洼,病害数据集-包括无人机视角,摩托车视角,车辆视角覆盖道路

道路裂缝,坑洼,病害数据集

包括无人机视角,摩托车视角,车辆视角

覆盖道路所有问题

一共有八类16000张

1到7依次为: ['横向裂缝', '纵向裂缝', '块状裂缝', '龟裂', '坑槽', '修补网状裂缝', '修补裂缝', '修补坑槽']

道路病害(如裂缝、坑洼等)不仅影响行车安全,还会缩短道路使用寿命。传统的道路检查依赖人工巡检,效率低下且容易遗漏。随着无人机、摩托车和车辆视角拍摄技术的发展,自动化的道路病害检测成为可能。本数据集旨在为道路裂缝、坑洼及病害检测提供高质量的标注数据,支持自动化检测系统的开发与应用。

数据集概述:
  • 名称:道路裂缝、坑洼及病害检测数据集
  • 规模:共计16,000张图像
  • 类别 :八类道路病害
    • 1:横向裂缝(Transverse Cracks)
    • 2:纵向裂缝(Longitudinal Cracks)
    • 3:块状裂缝(Block Cracks)
    • 4:龟裂(Alligator Cracking)
    • 5:坑槽(Potholes)
    • 6:修补网状裂缝(Mesh Cracking Repair)
    • 7:修补裂缝(Crack Repair)
    • 8:修补坑槽(Pothole Repair)
  • 视角:涵盖无人机视角、摩托车视角和车辆视角
数据集特点:
  1. 全面性:涵盖多种道路病害类型,确保数据集的多样性和实用性。
  2. 高质量标注:每张图像都已详细标注,确保数据的准确性和可靠性。
  3. 适用范围广:支持多种标注格式(VOC、YOLO),方便科研人员和开发者直接使用。
  4. 标准格式:采用广泛使用的标注文件格式,方便导入不同的检测框架。
数据集内容:
  • 横向裂缝(Transverse Cracks):标注了道路上的横向裂缝。
  • 纵向裂缝(Longitudinal Cracks):标注了道路上的纵向裂缝。
  • 块状裂缝(Block Cracks):标注了道路上的块状裂缝。
  • 龟裂(Alligator Cracking):标注了道路上的龟裂。
  • 坑槽(Potholes):标注了道路上的坑槽。
  • 修补网状裂缝(Mesh Cracking Repair):标注了修补过的网状裂缝。
  • 修补裂缝(Crack Repair):标注了修补过的裂缝。
  • 修补坑槽(Pothole Repair):标注了修补过的坑槽。
数据集用途:
  1. 病害检测:可用于训练和评估深度学习模型,特别是在道路裂缝、坑洼及病害检测方面。
  2. 养护管理:帮助实现道路养护的自动化检测,减少人工巡查的工作量。
  3. 科研与教育:为道路裂缝、坑洼及病害检测领域的研究和教学提供丰富的数据支持。
使用场景:
  1. 实时监控:在道路监控系统中,利用该数据集训练的模型可以实时检测道路病害。
  2. 养护规划:在道路养护和修复计划制定中,利用该数据集可以提高检测的准确性和速度。
  3. 生产管理:在道路管理和养护工作中,利用该数据集可以提高工作效率和管理水平。
技术指标:
  • 数据量:共计16,000张图像,涵盖八类道路病害。
  • 数据划分:数据集是否进行了训练集、验证集和测试集的划分,需根据数据集实际内容确定。
  • 标注格式:支持VOC和YOLO格式的标注文件,方便导入不同的检测框架。
  • 标注精度:所有图像均已详细标注,确保数据的准确性和可靠性。
注意事项:
  • 数据隐私:在使用过程中,请确保遵守相关法律法规,保护个人隐私。
  • 数据预处理:在使用前,建议进行一定的数据预处理,如图像归一化等。
获取方式:
  • 下载链接:请访问项目主页获取数据集下载链接。
  • 许可证:请仔细阅读数据集的使用许可协议。
关键代码示例:

以下是关键代码的示例,包括数据加载、模型训练、检测和结果展示。

数据加载(以VOC格式为例):
1import os
2import cv2
3import xml.etree.ElementTree as ET
4import numpy as np
5
6# 数据集路径
7DATASET_PATH = 'path/to/dataset'
8IMAGES_DIR = os.path.join(DATASET_PATH, 'JPEGImages')
9ANNOTATIONS_DIR = os.path.join(DATASET_PATH, 'Annotations')
10
11# 加载数据集
12def load_dataset(directory):
13    images = []
14    annotations = []
15
16    for img_file in os.listdir(IMAGES_DIR):
17        if img_file.endswith('.jpg') or img_file.endswith('.png'):
18            img_path = os.path.join(IMAGES_DIR, img_file)
19            annotation_path = os.path.join(ANNOTATIONS_DIR, img_file.replace('.jpg', '.xml').replace('.png', '.xml'))
20            
21            image = cv2.imread(img_path)
22            tree = ET.parse(annotation_path)
23            root = tree.getroot()
24            
25            objects = []
26            for obj in root.findall('object'):
27                name = obj.find('name').text
28                bbox = obj.find('bndbox')
29                xmin = int(bbox.find('xmin').text)
30                ymin = int(bbox.find('ymin').text)
31                xmax = int(bbox.find('xmax').text)
32                ymax = int(bbox.find('ymax').text)
33                objects.append((name, [xmin, ymin, xmax, ymax]))
34            
35            images.append(image)
36            annotations.append(objects)
37
38    return images, annotations
39
40train_images, train_annotations = load_dataset(os.path.join(DATASET_PATH, 'train'))
41val_images, val_annotations = load_dataset(os.path.join(DATASET_PATH, 'val'))
42test_images, test_annotations = load_dataset(os.path.join(DATASET_PATH, 'test'))
模型训练:
1# 初始化YOLOv8模型
2model = YOLO('yolov8n.pt')
3
4# 转换VOC格式到YOLO格式
5def convert_voc_to_yolo(annotations, image_shape=(640, 640), class_names=['Transverse Cracks', 'Longitudinal Cracks', 'Block Cracks', 'Alligator Cracking', 'Potholes', 'Mesh Cracking Repair', 'Crack Repair', 'Pothole Repair']):
6    yolo_annotations = []
7    class_map = {name: i for i, name in enumerate(class_names)}
8    
9    for ann in annotations:
10        converted = []
11        for name, obj in ann:
12            class_id = class_map[name]
13            x_center = (obj[0] + obj[2]) / 2 / image_shape[1]
14            y_center = (obj[1] + obj[3]) / 2 / image_shape[0]
15            width = (obj[2] - obj[0]) / image_shape[1]
16            height = (obj[3] - obj[1]) / image_shape[0]
17            converted.append([class_id, x_center, y_center, width, height])
18        yolo_annotations.append(converted)
19    return yolo_annotations
20
21# 定义训练参数
22EPOCHS = 100
23BATCH_SIZE = 16
24
25# 转换并训练模型
26train_yolo_annots = convert_voc_to_yolo(train_annotations)
27val_yolo_annots = convert_voc_to_yolo(val_annotations)
28
29results = model.train(data='road_disease_detection.yaml', epochs=EPOCHS, batch=BATCH_SIZE)
模型检测:
1# 加载训练好的模型
2model = YOLO('best.pt')
3
4# 检测图像
5def detect_road_diseases(image):
6    results = model.predict(image)
7    for result in results:
8        boxes = result.boxes
9        for box in boxes:
10            x1, y1, x2, y2 = box.xyxy[0]
11            conf = box.conf
12            class_id = box.cls
13            
14            # 显示结果
15            cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
16            class_name = ['Transverse Cracks', 'Longitudinal Cracks', 'Block Cracks', 'Alligator Cracking', 'Potholes', 'Mesh Cracking Repair', 'Crack Repair', 'Pothole Repair'][class_id]
17            cv2.putText(image, f'{class_name}, Conf: {conf:.2f}', (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
18    
19    return image
20
21# 测试图像
22test_image = cv2.imread('path/to/test_image.jpg')
23result_image = detect_road_diseases(test_image)
24cv2.imshow('Detected Road Diseases', result_image)
25cv2.waitKey(0)
26cv2.destroyAllWindows()
配置文件 road_disease_detection.yaml
1train: path/to/train/images
2val: path/to/val/images
3test: path/to/test/images
4
5nc: 8  # Number of classes
6names: ['Transverse Cracks', 'Longitudinal Cracks', 'Block Cracks', 'Alligator Cracking', 'Potholes', 'Mesh Cracking Repair', 'Crack Repair', 'Pothole Repair']  # Class names
7
8# Training parameters
9batch_size: 16
10epochs: 100
11img_size: [640, 640]  # Image size
使用指南:
  1. 数据准备:确保数据集路径正确,并且数据集已准备好。
  2. 模型训练:运行训练脚本,等待训练完成。
  3. 模型检测:使用训练好的模型进行检测,并查看检测结果。
结语:

本数据集提供了一个高质量的道路裂缝、坑洼及病害检测数据集,支持自动化病害检测、养护管理等多个应用场景。通过利用该数据集训练的模型,可以提高道路病害检测的效率和准确性。

相关推荐
weixin_468466851 天前
医学影像数据集汇总分享
深度学习·目标检测·数据集·图像分割·机器视觉·医学影像·ct影像
小楼先森3 天前
【数据集】生菜病害检测数据集530张6类YOLO+VOC格式
人工智能·深度学习·yolo·病害·生菜
数据岛12 天前
大模型应用的数字能源数据集
大数据·数据分析·数据集·能源
知来者逆15 天前
Octo—— 基于80万个机器人轨迹的预训练数据集用于训练通用机器人,可在零次拍摄中解决各种任务
人工智能·机器学习·机器人·数据集·大语言模型
数据猎手小k16 天前
EmoAva:首个大规模、高质量的文本到3D表情映射数据集。
人工智能·算法·3d·数据集·机器学习数据集·ai大模型应用
数据猎手小k19 天前
GEOBench-VLM:专为地理空间任务设计的视觉-语言模型基准测试数据集
人工智能·语言模型·自然语言处理·数据集·机器学习数据集·ai大模型应用
dundunmm19 天前
论文阅读之方法: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris
论文阅读·数据挖掘·数据集·聚类·单细胞·细胞聚类·细胞测序
数据猎手小k19 天前
BioDeepAV:一个多模态基准数据集,包含超过1600个深度伪造视频,用于评估深度伪造检测器在面对未知生成器时的性能。
人工智能·算法·数据集·音视频·机器学习数据集·ai大模型应用
数据猎手小k20 天前
HNTS-MRG 2024 Challenge:是一个包含200个头颈癌病例的磁共振图像及其标注的公开数据集,旨在推动AI在头颈癌放射治疗自动分割领域的研究。
人工智能·数据集·机器学习数据集·ai大模型应用
数据猎手小k1 个月前
OSPTrack:一个包含多个生态系统中软件包执行时生成的静态和动态特征的标记数据集,用于识别开源软件中的恶意行为。
数据集·开源软件·机器学习数据集·ai大模型应用