FewShotChatMessagePromptTemplate 和 FewShotPromptTemplate区别

FewShotChatMessagePromptTemplate 和 FewShotPromptTemplate 都是 LangChain 框架中用于少样本学习的提示模板(Prompt Template),但它们在设计和用途上存在一些区别。

FewShotChatMessagePromptTemplate

  • 用途:主要用于聊天场景中的少样本提示。它旨在生成格式化的聊天消息,以便与聊天模型(如ChatGPT)交互。
  • 特点
    • 消息格式:能够生成包含"人类"和"AI"角色的消息序列,模仿真实对话中的交互模式。
    • 动态选择:可以根据输入动态选择示例,并将这些示例格式化到最终的提示中,以指导聊天模型的输出。
    • 聊天模型友好:由于其输出是格式化的聊天消息,因此特别适用于与聊天模型进行交互。

FewShotPromptTemplate

  • 用途:更为通用,不仅限于聊天场景,可以用于各种需要少样本学习的任务。
  • 特点
    • 灵活性:提供了更大的灵活性,允许用户根据具体任务设计提示模板。
    • 示例组织:能够包含示例数据,并允许用户指定如何将这些示例数据格式化为提示。
    • 多场景适用:不仅限于聊天消息,还可以用于文本生成、分类、问答等多种任务。

区别总结

FewShotChatMessagePromptTemplate FewShotPromptTemplate
用途 主要用于聊天场景中的少样本提示 更为通用,适用于各种少样本学习任务
特点 生成格式化的聊天消息,模仿真实对话 提供更大的灵活性,适用于多种任务
消息格式 特定于聊天消息,包含"人类"和"AI"角色 不限于聊天消息,可根据任务需求设计
动态选择 支持根据输入动态选择示例 支持动态选择,但更多关注于示例的组织和格式化
应用场景 聊天模型交互 文本生成、分类、问答等多种任务

综上所述,FewShotChatMessagePromptTemplate 和 FewShotPromptTemplate 的主要区别在于它们的用途和设计特点。前者更专注于聊天场景,后者则提供了更广泛的适用性和灵活性。在实际应用中,用户可以根据具体任务和需求选择合适的提示模板。

相关推荐
年年测试11 小时前
在LangChain中无缝接入MCP服务器扩展AI智能体能力
服务器·人工智能·langchain
信马堂12 小时前
MCP Token超限问题解决方案
人工智能·langchain
freephp1 天前
企业级LLM已经到了next level:LangChain + DeepSeek = 王炸
langchain·deepseek
小陈phd1 天前
高级RAG策略学习(四)——上下文窗口增强检索RAG
人工智能·学习·langchain
YUELEI1181 天前
langchain 提示模版 PromptTemplate
python·langchain
东方不败之鸭梨的测试笔记1 天前
LangChain: Models, Prompts 模型和提示词
人工智能·python·langchain
AI Echoes1 天前
别再手工缝合API了!开源LLMOps神器LMForge,让你像搭积木一样玩转AI智能体!
人工智能·python·langchain·开源·agent
AI Echoes1 天前
从零构建企业级LLMOps平台:LMForge——支持多模型、可视化编排、知识库与安全审核的全栈解决方案
人工智能·python·langchain·开源·agent
小陈phd1 天前
高级RAG策略学习(六)——Contextual Chunk Headers(CCH)技术
人工智能·langchain
BricheersZ2 天前
LangChain4J-(4)-多模态视觉理解
java·人工智能·langchain