FewShotChatMessagePromptTemplate 和 FewShotPromptTemplate区别

FewShotChatMessagePromptTemplate 和 FewShotPromptTemplate 都是 LangChain 框架中用于少样本学习的提示模板(Prompt Template),但它们在设计和用途上存在一些区别。

FewShotChatMessagePromptTemplate

  • 用途:主要用于聊天场景中的少样本提示。它旨在生成格式化的聊天消息,以便与聊天模型(如ChatGPT)交互。
  • 特点
    • 消息格式:能够生成包含"人类"和"AI"角色的消息序列,模仿真实对话中的交互模式。
    • 动态选择:可以根据输入动态选择示例,并将这些示例格式化到最终的提示中,以指导聊天模型的输出。
    • 聊天模型友好:由于其输出是格式化的聊天消息,因此特别适用于与聊天模型进行交互。

FewShotPromptTemplate

  • 用途:更为通用,不仅限于聊天场景,可以用于各种需要少样本学习的任务。
  • 特点
    • 灵活性:提供了更大的灵活性,允许用户根据具体任务设计提示模板。
    • 示例组织:能够包含示例数据,并允许用户指定如何将这些示例数据格式化为提示。
    • 多场景适用:不仅限于聊天消息,还可以用于文本生成、分类、问答等多种任务。

区别总结

FewShotChatMessagePromptTemplate FewShotPromptTemplate
用途 主要用于聊天场景中的少样本提示 更为通用,适用于各种少样本学习任务
特点 生成格式化的聊天消息,模仿真实对话 提供更大的灵活性,适用于多种任务
消息格式 特定于聊天消息,包含"人类"和"AI"角色 不限于聊天消息,可根据任务需求设计
动态选择 支持根据输入动态选择示例 支持动态选择,但更多关注于示例的组织和格式化
应用场景 聊天模型交互 文本生成、分类、问答等多种任务

综上所述,FewShotChatMessagePromptTemplate 和 FewShotPromptTemplate 的主要区别在于它们的用途和设计特点。前者更专注于聊天场景,后者则提供了更广泛的适用性和灵活性。在实际应用中,用户可以根据具体任务和需求选择合适的提示模板。

相关推荐
MichaelIp14 分钟前
基于MCP协议的多AGENT文章自动编写系统
语言模型·langchain·prompt·ai写作·llamaindex·langgraph·mcp
玲小珑26 分钟前
LangChain.js 完全开发手册(十六)实战综合项目二:AI 驱动的代码助手
前端·langchain·ai编程
viperrrrrrrrrr714 小时前
Agent向量存储中的记忆衰退与记忆过载解决方案
langchain·大模型·agent·rag
爱喝白开水a1 天前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
cooldream20091 天前
LangChain PromptTemplate 全解析:从模板化提示到智能链构
langchain·prompt·prompttemplate
serve the people1 天前
LangChain 表达式语言核心组合:Prompt + LLM + OutputParser
java·langchain·prompt
大模型真好玩2 天前
LangGraph实战项目:从零手搓DeepResearch(二)——DeepResearch架构设计与实现
人工智能·python·langchain
小北爱编程ma2 天前
【Langchain】memory所有类型介绍及代码示例
langchain
985小水博一枚呀3 天前
【AI大模型学习路线】第三阶段之RAG与LangChain——第十九章(实战基于Advanced RAG的PDF问答)系统部署与测试?
人工智能·学习·langchain·pdf
至此流年莫相忘3 天前
LangChain HelloWorld
langchain