【机器学习】10——logistic的直观理解

机器学习10------logistic的直观理解

logistic


目录

训练过程

数据集:

特征: 学习时间(例如,1小时、2小时等)。

标签: 是否通过考试(0 或 1)。
模型结构:

输入: 学习时间(特征)。

输出: 学生通过考试的概率(预测值)。

初始化模型的参数(权重和偏置)通常被初始化为随机值或零。

线性组合:

计算输入特征(学习时间)与权重的线性组合,再加上偏置。
z=w⋅x+b
其中 w 是权重,x 是特征(学习时间),b 是偏置。

将线性组合的结果 z 输入到 Sigmoid 函数中,得到预测的概率值

根据损失函数优化参数

具体例子

预测一个学生是否能通过考试(0 表示未通过,1 表示通过):

  • 假设我们初始化模型的参数为:

    权重w=0

    偏置 b=0

  • 对于一个给定的学习时间 x,我们计算线性组合

    -z=w⋅x+b

    例如,对于学习时间 x=4,我们有: z=0⋅4+0=0

重复以上步骤

相关推荐
掘金安东尼19 分钟前
Google+禁用“一次性抓取100条搜索结果”,SEO迎来变革?
人工智能
FIN666825 分钟前
射频技术领域的领航者,昂瑞微IPO即将上会审议
前端·人工智能·前端框架·信息与通信
小麦矩阵系统永久免费36 分钟前
短视频矩阵系统哪个好用?2025最新评测与推荐|小麦矩阵系统
大数据·人工智能·矩阵
Mr.Lee jack38 分钟前
【vLLM】源码解读:高性能大语言模型推理引擎的工程设计与实现
人工智能·语言模型·自然语言处理
IT_陈寒1 小时前
Java性能优化:这5个Spring Boot隐藏技巧让你的应用提速40%
前端·人工智能·后端
MicroTech20251 小时前
微算法科技(NASDAQ:MLGO)开发延迟和隐私感知卷积神经网络分布式推理,助力可靠人工智能系统技术
人工智能·科技·算法
喜欢吃豆1 小时前
多轮智能对话系统架构方案(可实战):从基础模型到自我优化的对话智能体,数据飞轮的重要性
人工智能·语言模型·自然语言处理·系统架构·大模型·多轮智能对话系统
文火冰糖的硅基工坊1 小时前
[嵌入式系统-83]:算力芯片的类型与主流架构
人工智能·重构·架构
视觉语言导航3 小时前
ICRA-2025 | 阿德莱德机器人拓扑导航探索!TANGO:具有局部度量控制的拓扑目标可穿越性感知具身导航
人工智能·机器人·具身智能
西猫雷婶8 小时前
CNN卷积计算
人工智能·神经网络·cnn