【机器学习】10——logistic的直观理解

机器学习10------logistic的直观理解

logistic


目录

训练过程

数据集:

特征: 学习时间(例如,1小时、2小时等)。

标签: 是否通过考试(0 或 1)。
模型结构:

输入: 学习时间(特征)。

输出: 学生通过考试的概率(预测值)。

初始化模型的参数(权重和偏置)通常被初始化为随机值或零。

线性组合:

计算输入特征(学习时间)与权重的线性组合,再加上偏置。
z=w⋅x+b
其中 w 是权重,x 是特征(学习时间),b 是偏置。

将线性组合的结果 z 输入到 Sigmoid 函数中,得到预测的概率值

根据损失函数优化参数

具体例子

预测一个学生是否能通过考试(0 表示未通过,1 表示通过):

  • 假设我们初始化模型的参数为:

    权重w=0

    偏置 b=0

  • 对于一个给定的学习时间 x,我们计算线性组合

    -z=w⋅x+b

    例如,对于学习时间 x=4,我们有: z=0⋅4+0=0

重复以上步骤

相关推荐
serve the people3 小时前
机器学习(ML)和人工智能(AI)技术在WAF安防中的应用
人工智能·机器学习
0***K8923 小时前
前端机器学习
人工智能·机器学习
陈天伟教授3 小时前
基于学习的人工智能(5)机器学习基本框架
人工智能·学习·机器学习
m0_650108244 小时前
PaLM-E:具身智能的多模态语言模型新范式
论文阅读·人工智能·机器人·具身智能·多模态大语言模型·palm-e·大模型驱动
zandy10114 小时前
2025年11月AI IDE权深度测榜:深度分析不同场景的落地选型攻略
ide·人工智能·ai编程·ai代码·腾讯云ai代码助手
欢喜躲在眉梢里4 小时前
CANN 异构计算架构实操指南:从环境部署到 AI 任务加速全流程
运维·服务器·人工智能·ai·架构·计算
0***R5154 小时前
人工智能在金融风控中的应用
人工智能
2501_941403764 小时前
人工智能赋能智慧金融互联网应用:智能风控、个性化理财与金融服务优化实践探索》
人工智能
youngerwang4 小时前
【字节跳动 AI 原生 IDE TRAE 】
ide·人工智能·trae
youngerwang5 小时前
AI 编程环境与主流 AI IDE 对比分析报告
ide·人工智能