【机器学习】10——logistic的直观理解

机器学习10------logistic的直观理解

logistic


目录

训练过程

数据集:

特征: 学习时间(例如,1小时、2小时等)。

标签: 是否通过考试(0 或 1)。
模型结构:

输入: 学习时间(特征)。

输出: 学生通过考试的概率(预测值)。

初始化模型的参数(权重和偏置)通常被初始化为随机值或零。

线性组合:

计算输入特征(学习时间)与权重的线性组合,再加上偏置。
z=w⋅x+b
其中 w 是权重,x 是特征(学习时间),b 是偏置。

将线性组合的结果 z 输入到 Sigmoid 函数中,得到预测的概率值

根据损失函数优化参数

具体例子

预测一个学生是否能通过考试(0 表示未通过,1 表示通过):

  • 假设我们初始化模型的参数为:

    权重w=0

    偏置 b=0

  • 对于一个给定的学习时间 x,我们计算线性组合

    -z=w⋅x+b

    例如,对于学习时间 x=4,我们有: z=0⋅4+0=0

重复以上步骤

相关推荐
五度易链-区域产业数字化管理平台18 小时前
技术深一度|五度易链如何通过“AI+大数据”深度融合提升治理精准效能?
大数据·人工智能
俊哥V18 小时前
AI一周事件(2026年01月21日-01月27日)
人工智能·ai
云边云科技_云网融合19 小时前
下单、收银不中断,负载均衡是零售系统平稳运行的基石
大数据·网络·人工智能·安全
小宇的天下19 小时前
Cadence allegro---Cross section generater
人工智能
雷焰财经19 小时前
出海新航路:宇信科技以AI与生态协同,赋能全球金融智能化
人工智能·科技·金融
AndrewHZ19 小时前
【图像处理与ISP技术】图像质量评价领域经典算法一览
图像处理·人工智能·深度学习·算法·机器学习·图像质量评价·iqa
shangjian00721 小时前
AI-大语言模型LLM-Transformer架构4-多头注意力、掩码注意力、交叉注意力
人工智能·语言模型·transformer
努力犯错21 小时前
如何使用AI图片扩展器扩展图片边界:2026年完整指南
人工智能
晨非辰21 小时前
Linux权限管理速成:umask掩码/file透视/粘滞位防护15分钟精通,掌握权限减法与安全协作模型
linux·运维·服务器·c++·人工智能·后端
丝斯20111 天前
AI学习笔记整理(63)——大模型对齐与强化学习
人工智能·笔记·学习