【机器学习】10——logistic的直观理解

机器学习10------logistic的直观理解

logistic


目录

训练过程

数据集:

特征: 学习时间(例如,1小时、2小时等)。

标签: 是否通过考试(0 或 1)。
模型结构:

输入: 学习时间(特征)。

输出: 学生通过考试的概率(预测值)。

初始化模型的参数(权重和偏置)通常被初始化为随机值或零。

线性组合:

计算输入特征(学习时间)与权重的线性组合,再加上偏置。
z=w⋅x+b
其中 w 是权重,x 是特征(学习时间),b 是偏置。

将线性组合的结果 z 输入到 Sigmoid 函数中,得到预测的概率值

根据损失函数优化参数

具体例子

预测一个学生是否能通过考试(0 表示未通过,1 表示通过):

  • 假设我们初始化模型的参数为:

    权重w=0

    偏置 b=0

  • 对于一个给定的学习时间 x,我们计算线性组合

    -z=w⋅x+b

    例如,对于学习时间 x=4,我们有: z=0⋅4+0=0

重复以上步骤

相关推荐
时间会给答案scidag1 分钟前
Spring AI Alibaba 学习day01
人工智能·学习·spring
ghie90903 分钟前
基于粒子滤波的多目标检测前跟踪(TBD)MATLAB实现
人工智能·目标检测·matlab
分布式存储与RustFS3 分钟前
RustFS在AI场景下的实测:从GPU到存储的完整加速方案
开发语言·人工智能·rust·对象存储·企业存储·rustfs·minio国产化替代
Deepoch18 分钟前
Deepoc具身模型开发板:半导体制造智能化的技术引擎
人工智能·开发板·半导体·具身模型·deepoc
凤希AI伴侣22 分钟前
凤希AI提出FXPA2P:下一代点对点AI服务架构-2026年1月14日
人工智能·架构·凤希ai伴侣
科技与数码27 分钟前
中小企业AI知识权威构建:北京鲲鹏伟业的GEO赋能之道——GEO公司助力企业数字化转型
人工智能
阿湯哥33 分钟前
Workflow or Agent+Skill:AI 工作流的进化抉择
人工智能
阿坤带你走近大数据38 分钟前
如何解决农业数据的碎片化问题
大数据·人工智能·rag·大模型应用
Modeler·X40 分钟前
关系型与非关系型数据库终极对决
数据库·人工智能
颜淡慕潇42 分钟前
动态代理赋能:高效爬取沃尔玛海量商品信息与AI分析实战
人工智能·后端