【机器学习】10——logistic的直观理解

机器学习10------logistic的直观理解

logistic


目录

训练过程

数据集:

特征: 学习时间(例如,1小时、2小时等)。

标签: 是否通过考试(0 或 1)。
模型结构:

输入: 学习时间(特征)。

输出: 学生通过考试的概率(预测值)。

初始化模型的参数(权重和偏置)通常被初始化为随机值或零。

线性组合:

计算输入特征(学习时间)与权重的线性组合,再加上偏置。
z=w⋅x+b
其中 w 是权重,x 是特征(学习时间),b 是偏置。

将线性组合的结果 z 输入到 Sigmoid 函数中,得到预测的概率值

根据损失函数优化参数

具体例子

预测一个学生是否能通过考试(0 表示未通过,1 表示通过):

  • 假设我们初始化模型的参数为:

    权重w=0

    偏置 b=0

  • 对于一个给定的学习时间 x,我们计算线性组合

    -z=w⋅x+b

    例如,对于学习时间 x=4,我们有: z=0⋅4+0=0

重复以上步骤

相关推荐
红头辣椒1 分钟前
AI赋能全流程,重塑需求管理新生态——Visual RM需求数智化平台核心能力解析
人工智能·设计模式·软件工程·需求分析·用户运营
东方佑1 分钟前
思维自指:LLM推理架构的维度突破与意识雏形
人工智能·架构
AI猫站长1 分钟前
快讯|DeepSeek Engram论文详解存算分离,华为SWE-Lego开源轻量级代码智能体全栈方案,
人工智能·机器人·开源·具身智能·deepseek·灵心巧手
CoookeCola3 分钟前
从人脸检测到音频偏移:基于SyncNet的音视频偏移计算与人脸轨迹追踪技术解析
数据仓库·人工智能·目标检测·计算机视觉·数据挖掘
linmoo19865 分钟前
Langchain4j 系列之二十一 - Language Models
人工智能·语言模型·自然语言处理·langchain·指令微调·langchain4j·languagemodel
ai_top_trends6 分钟前
2026 年 AI 生成 PPT 工具推荐清单:测评后给出的答案
人工智能·python·powerpoint
程序新视界6 分钟前
“提供溢出的情绪价值”是AI产品极具可能性的方向
人工智能·后端·产品
努力犯错8 分钟前
GLM-Image:首个开源工业级自回归图像生成模型完全指南
机器学习·数据挖掘·回归·开源
xixixi7777710 分钟前
AGI-Next前沿峰会——对于唐杰教授提到的AI下一步方向的“两条思路一次取舍”的思考(思路分析+通俗易懂解释)
人工智能·ai·大模型·agi·通用人工智能·asi
技术大咖--上好嘉12 分钟前
聚焦老龄化AI赋能 京能天云数据-智慧康养服务 APP重构老年健康管理新范式
人工智能