探索Timescale Vector与Postgres数据库的融合:AI应用的新选择

探索Timescale Vector与Postgres数据库的融合:AI应用的新选择

引言

现代AI应用常常需要处理大量的向量嵌入和复杂查询。Timescale Vector便是为此而生,作为PostgreSQL++,它在Postgres的基础上扩展了处理AI应用的能力,支持高效的向量存储和查询。在这篇文章中,我们将深入探讨Timescale Vector的功能,并通过示例展示如何使用它进行自查询。

主要内容

什么是Timescale Vector?

Timescale Vector是针对AI应用的PostgreSQL增强版。它能高效地存储和查询数百万的向量嵌入,使用DiskANN启发的索引算法提高了相似性搜索的速度和准确性。此外,它支持基于时间的自动分区和索引,提供了一种使用SQL查询向量嵌入和关系数据的熟悉接口。

Timescale Vector的优势

  • 与pgvector的集成:提升大量向量的相似性搜索。
  • 企业级特性:如流备份、复制、高可用性和行级安全。
  • 单一数据库体验:存储关系元数据、向量嵌入和时间序列数据。
  • 安全合规:提供企业级的安全性和合规支持。

如何访问Timescale Vector?

Timescale Vector目前只能通过Timescale的云平台访问。LangChain用户可以享受90天的免费试用,详情请参阅Timescale Vector的博客

代码示例

以下是如何在Python中使用Timescale Vector的代码示例。

python 复制代码
# 确保已安装必要的包
!pip install --upgrade --quiet lark
!pip install --upgrade --quiet timescale-vector

import os
from dotenv import find_dotenv, load_dotenv
from langchain_community.vectorstores.timescalevector import TimescaleVector
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings

# 加载API密钥和服务URL
_ = load_dotenv(find_dotenv())
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
TIMESCALE_SERVICE_URL = os.environ["TIMESCALE_SERVICE_URL"]

# 创建嵌入实例
embeddings = OpenAIEmbeddings()

# 示例文档
docs = [
    Document(
        page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
        metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"},
    ),
    # 更多文档...
]

# 创建Timescale Vector vectorstore
COLLECTION_NAME = "langchain_self_query_demo"
vectorstore = TimescaleVector.from_documents(
    embedding=embeddings,
    documents=docs,
    collection_name=COLLECTION_NAME,
    service_url=TIMESCALE_SERVICE_URL,  # 使用API代理服务提高访问稳定性
)

# 创建自查询检索器
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI

metadata_field_info = [
    AttributeInfo(
        name="genre",
        description="The genre of the movie",
        type="string or list[string]",
    ),
    # 更多字段...
]
document_content_description = "Brief summary of a movie"

llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
    llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)

# 使用检索器进行查询
result = retriever.invoke("What are some movies about dinosaurs")
print(result)

常见问题和解决方案

  1. API访问问题:由于某些地区的网络限制,开发者可能需要使用API代理服务来提高访问的稳定性。

  2. 向量存储性能:确保数据库配置符合需求并充分利用Timescale Vector的索引和分区能力。

总结和进一步学习资源

Timescale Vector为PostgreSQL用户提供了一个强大的工具,使其能够高效处理AI应用中的向量数据。通过简单的SQL接口,它为开发者带来了极大的便利。

进一步学习资源

参考资料

  • Timescale Vector文档
  • Timescale博客
  • LangChain库

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---

相关推荐
ZPC821019 分钟前
OpenCV—颜色识别
人工智能·opencv·计算机视觉
Mr.简锋25 分钟前
vs2022搭建opencv开发环境
人工智能·opencv·计算机视觉
weixin_4432906930 分钟前
【论文阅读】InstructPix2Pix: Learning to Follow Image Editing Instructions
论文阅读·人工智能·计算机视觉
平头哥在等你40 分钟前
Python中的正则表达式教程
python·正则表达式
Best_Me071 小时前
如何在Pycharm的终端里进入自己的环境
ide·python·pycharm
FIN技术铺1 小时前
问:数据库的六种锁机制实践总结?
数据库·sql·oracle
ai产品老杨1 小时前
部署神经网络时计算图的优化方法
人工智能·深度学习·神经网络·安全·机器学习·开源
火山引擎边缘云1 小时前
创新实践:基于边缘智能+扣子的智能轮椅 AIoT 解决方案
人工智能·llm·边缘计算
fanxbl9571 小时前
深入探索离散 Hopfield 神经网络
人工智能·神经网络
TaoYuan__1 小时前
深度学习概览
人工智能·深度学习