探索Timescale Vector与Postgres数据库的融合:AI应用的新选择

探索Timescale Vector与Postgres数据库的融合:AI应用的新选择

引言

现代AI应用常常需要处理大量的向量嵌入和复杂查询。Timescale Vector便是为此而生,作为PostgreSQL++,它在Postgres的基础上扩展了处理AI应用的能力,支持高效的向量存储和查询。在这篇文章中,我们将深入探讨Timescale Vector的功能,并通过示例展示如何使用它进行自查询。

主要内容

什么是Timescale Vector?

Timescale Vector是针对AI应用的PostgreSQL增强版。它能高效地存储和查询数百万的向量嵌入,使用DiskANN启发的索引算法提高了相似性搜索的速度和准确性。此外,它支持基于时间的自动分区和索引,提供了一种使用SQL查询向量嵌入和关系数据的熟悉接口。

Timescale Vector的优势

  • 与pgvector的集成:提升大量向量的相似性搜索。
  • 企业级特性:如流备份、复制、高可用性和行级安全。
  • 单一数据库体验:存储关系元数据、向量嵌入和时间序列数据。
  • 安全合规:提供企业级的安全性和合规支持。

如何访问Timescale Vector?

Timescale Vector目前只能通过Timescale的云平台访问。LangChain用户可以享受90天的免费试用,详情请参阅Timescale Vector的博客

代码示例

以下是如何在Python中使用Timescale Vector的代码示例。

python 复制代码
# 确保已安装必要的包
!pip install --upgrade --quiet lark
!pip install --upgrade --quiet timescale-vector

import os
from dotenv import find_dotenv, load_dotenv
from langchain_community.vectorstores.timescalevector import TimescaleVector
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings

# 加载API密钥和服务URL
_ = load_dotenv(find_dotenv())
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
TIMESCALE_SERVICE_URL = os.environ["TIMESCALE_SERVICE_URL"]

# 创建嵌入实例
embeddings = OpenAIEmbeddings()

# 示例文档
docs = [
    Document(
        page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
        metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"},
    ),
    # 更多文档...
]

# 创建Timescale Vector vectorstore
COLLECTION_NAME = "langchain_self_query_demo"
vectorstore = TimescaleVector.from_documents(
    embedding=embeddings,
    documents=docs,
    collection_name=COLLECTION_NAME,
    service_url=TIMESCALE_SERVICE_URL,  # 使用API代理服务提高访问稳定性
)

# 创建自查询检索器
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI

metadata_field_info = [
    AttributeInfo(
        name="genre",
        description="The genre of the movie",
        type="string or list[string]",
    ),
    # 更多字段...
]
document_content_description = "Brief summary of a movie"

llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
    llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)

# 使用检索器进行查询
result = retriever.invoke("What are some movies about dinosaurs")
print(result)

常见问题和解决方案

  1. API访问问题:由于某些地区的网络限制,开发者可能需要使用API代理服务来提高访问的稳定性。

  2. 向量存储性能:确保数据库配置符合需求并充分利用Timescale Vector的索引和分区能力。

总结和进一步学习资源

Timescale Vector为PostgreSQL用户提供了一个强大的工具,使其能够高效处理AI应用中的向量数据。通过简单的SQL接口,它为开发者带来了极大的便利。

进一步学习资源

参考资料

  • Timescale Vector文档
  • Timescale博客
  • LangChain库

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---

相关推荐
l1t37 分钟前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华2 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu3 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
人工智能训练师4 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
酷飞飞4 小时前
Python网络与多任务编程:TCP/UDP实战指南
网络·python·tcp/ip
MarkHard1235 小时前
如何利用redis使用一个滑动窗口限流
数据库·redis·缓存
cxr8285 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡5 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
数字化顾问5 小时前
Python:OpenCV 教程——从传统视觉到深度学习:YOLOv8 与 OpenCV DNN 模块协同实现工业缺陷检测
python
幂简集成6 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发