OpenCV结构分析与形状描述符(18)比较两个轮廓相似度的函数matchShapes()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

比较两个形状。

该函数用于比较两个形状。所有三个实现的方法都使用了 Hu 不变矩(参见 HuMoments

函数原型

cpp 复制代码
double cv::matchShapes
(
	InputArray 	contour1,
	InputArray 	contour2,
	int 	method,
	double 	parameter 
)		

参数

  • 参数contour1 第一个轮廓或灰度图像。
  • 参数contour2 第二个轮廓或灰度图像。
  • 参数method 比较方法,参见 ShapeMatchModes。
  • 参数parameter 方法特定的参数(目前不支持)。

返回值

返回一个表示两个形状相似度的双精度浮点数。数值越小,表示两个形状越相似。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 定义两个矩形的顶点
    std::vector< cv::Point > contour1 = { cv::Point( 0, 0 ), cv::Point( 2, 0 ), cv::Point( 2, 2 ), cv::Point( 0, 2 ) };

    std::vector< cv::Point > contour2 = { cv::Point( 1, 1 ), cv::Point( 3, 1 ), cv::Point( 3, 3 ), cv::Point( 1, 3 ) };

    // 计算两个轮廓的相似度
    double similarity = cv::matchShapes( contour1, contour2, cv::CONTOURS_MATCH_I1, 0.0 );

    std::cout << "Similarity between contours: " << similarity << std::endl;

    return 0;
}

运行结果

bash 复制代码
Similarity between contours: 6.66134e-16

得到的结果 6.66134e-16 是一个非常小的数值,接近于零。这意味着根据 cv::matchShapes 函数的计算,两个轮廓之间的相似度非常高,几乎完全相同。在数值计算中,如此小的数值通常表示两个对象之间几乎没有差异。

相关推荐
Chef_Chen1 小时前
从0开始学习计算机视觉--Day09--卷积与池化
深度学习·学习·计算机视觉
charley.layabox5 小时前
8月1日ChinaJoy酒会 | 游戏出海高端私享局 | 平台 × 发行 × 投资 × 研发精英畅饮畅聊
人工智能·游戏
DFRobot智位机器人6 小时前
AIOT开发选型:行空板 K10 与 M10 适用场景与选型深度解析
人工智能
想成为风筝8 小时前
从零开始学习深度学习—水果分类之PyQt5App
人工智能·深度学习·计算机视觉·pyqt
F_D_Z8 小时前
MMaDA:多模态大型扩散语言模型
人工智能·语言模型·自然语言处理
大知闲闲哟9 小时前
深度学习G2周:人脸图像生成(DCGAN)
人工智能·深度学习
飞哥数智坊9 小时前
Coze实战第15讲:钱都去哪儿了?Coze+飞书搭建自动记账系统
人工智能·coze
wenzhangli79 小时前
低代码引擎核心技术:OneCode常用动作事件速查手册及注解驱动开发详解
人工智能·低代码·云原生
千宇宙航10 小时前
闲庭信步使用图像验证平台加速FPGA的开发:第十课——图像gamma矫正的FPGA实现
图像处理·计算机视觉·缓存·fpga开发
潘达斯奈基~10 小时前
大模型的Temperature、Top-P、Top-K、Greedy Search、Beem Search
人工智能·aigc