OpenCV结构分析与形状描述符(18)比较两个轮廓相似度的函数matchShapes()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

比较两个形状。

该函数用于比较两个形状。所有三个实现的方法都使用了 Hu 不变矩(参见 HuMoments

函数原型

cpp 复制代码
double cv::matchShapes
(
	InputArray 	contour1,
	InputArray 	contour2,
	int 	method,
	double 	parameter 
)		

参数

  • 参数contour1 第一个轮廓或灰度图像。
  • 参数contour2 第二个轮廓或灰度图像。
  • 参数method 比较方法,参见 ShapeMatchModes。
  • 参数parameter 方法特定的参数(目前不支持)。

返回值

返回一个表示两个形状相似度的双精度浮点数。数值越小,表示两个形状越相似。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 定义两个矩形的顶点
    std::vector< cv::Point > contour1 = { cv::Point( 0, 0 ), cv::Point( 2, 0 ), cv::Point( 2, 2 ), cv::Point( 0, 2 ) };

    std::vector< cv::Point > contour2 = { cv::Point( 1, 1 ), cv::Point( 3, 1 ), cv::Point( 3, 3 ), cv::Point( 1, 3 ) };

    // 计算两个轮廓的相似度
    double similarity = cv::matchShapes( contour1, contour2, cv::CONTOURS_MATCH_I1, 0.0 );

    std::cout << "Similarity between contours: " << similarity << std::endl;

    return 0;
}

运行结果

bash 复制代码
Similarity between contours: 6.66134e-16

得到的结果 6.66134e-16 是一个非常小的数值,接近于零。这意味着根据 cv::matchShapes 函数的计算,两个轮廓之间的相似度非常高,几乎完全相同。在数值计算中,如此小的数值通常表示两个对象之间几乎没有差异。

相关推荐
码农三叔8 分钟前
(9-3)电源管理与能源系统:充电与扩展能源方案
人工智能·嵌入式硬件·机器人·能源·人形机器人
2401_8638014629 分钟前
怎么把多个glb/gltf格式模型,导出保存一个个物体,只保留自己想要的部分
人工智能
一切皆有可能!!29 分钟前
昇腾atlas 300I duo部署Qwen3-8B完整实战:从选型到成功运行
人工智能·大模型·昇腾·大模型部署
问道财经30 分钟前
和飞书合作,安克没能走出舒适区
人工智能
Fleshy数模36 分钟前
从一条直线开始:线性回归的底层逻辑与实战
人工智能·机器学习·概率论
ssxueyi1 小时前
ModelEngine + MCP:解锁 AI 应用的无限可能
人工智能·大模型·ai应用·ai开发·modelengine
AAD555888991 小时前
压接工具检测识别----RPN-R50-Caffe-C4模型训练与优化
人工智能·深度学习
OLOLOadsd1231 小时前
基于NAS-FCOS的拥挤路段车辆检测系统:R50-Caffe-FPN-NASHead-GN-Head模型训练与优化_1
人工智能·深度学习
AIArchivist1 小时前
破解肝胆慢病管理痛点,AI让长期守护更精准高效
人工智能
laplace01231 小时前
Claude Code 逆向工程报告 笔记(学习记录)
数据库·人工智能·笔记·学习·agent·rag