基于Sparse Optical Flow 的Homography estimation

python 复制代码
import copy
import time

import cv2
import numpy as np


def draw_kpts(image0, image1, mkpts0, mkpts1, margin=10):
    H0, W0 = image0.shape
    H1, W1 = image1.shape
    H, W = max(H0, H1), W0 + W1 + margin
    out = 255 * np.ones((H, W), np.uint8)
    out[:H0, :W0] = image0
    out[:H1, W0+margin:] = image1
    out = np.stack([out]*3, -1)

    mkpts0, mkpts1 = np.round(mkpts0).astype(int), np.round(mkpts1).astype(int)
    # print(f"mkpts0.shape : {mkpts0.shape}")
    c = (0, 255, 0)
    for (new, old) in zip(mkpts0, mkpts1):
        x0, y0 = new.ravel()
        x1, y1 = old.ravel()
        # print(f"x0 : {x0}")
        # cv2.line(out, (x0, y0), (x1 + margin + W0, y1),
        #         color=c, thickness=1, lineType=cv2.LINE_AA)
        # display line end-points as circles
        cv2.circle(out, (x0, y0), 2, c, -1, lineType=cv2.LINE_AA)
        cv2.circle(out, (x1 + margin + W0, y1), 2, c, -1,
                lineType=cv2.LINE_AA)
        
    return out

if __name__ == "__main__":
    img0Path = "/training/datasets/orchard/orchard_imgs_/000130.jpg"
    img1Path = "/training/datasets/orchard/orchard_imgs_/000132.jpg"

    img0 = cv2.imread(img0Path, 0)
    img1 = cv2.imread(img1Path, 0)
    h, w = img0.shape

    mask = np.zeros_like(img0)
    mask[int(0.02 * h): int(0.98 * h), int(0.02 * w): int(0.98 * w)] = 255

    keypoints = cv2.goodFeaturesToTrack(
                img0,
                mask=mask,
                maxCorners=2048,
                qualityLevel=0.01,
                minDistance=1,
                blockSize=3,
                useHarrisDetector=False,
                k=0.04
            )
    print(f"keypoints , size : {keypoints.shape}")

    next_keypoints, status, err = cv2.calcOpticalFlowPyrLK(
                img0, img1, keypoints, None
            )
    
    H, _ = cv2.estimateAffinePartial2D(
                keypoints, next_keypoints, cv2.RANSAC
            )
    
    print(f"H : {H}")

    out = draw_kpts(img0, img1, keypoints , next_keypoints)
    cv2.imwrite("keypoints.jpg", out)
相关推荐
yunyun18863582 分钟前
AI - 自然语言处理(NLP) - part 2 - 词向量
人工智能·自然语言处理
热心不起来的市民小周27 分钟前
基于 RoBERTa + 多策略优化的中文商品名细粒度分类
人工智能·分类·数据挖掘
却道天凉_好个秋41 分钟前
OpenCV(三):保存文件
人工智能·opencv·计算机视觉
aneasystone本尊1 小时前
深入 Dify 应用的会话流程之流式处理
人工智能
深栈1 小时前
机器学习:决策树
人工智能·python·决策树·机器学习·sklearn
欧阳码农1 小时前
忍了一年多,我做了一个工具将文章一键发布到多个平台
前端·人工智能·后端
IT_陈寒1 小时前
Python性能优化:5个让你的代码提速300%的NumPy高级技巧
前端·人工智能·后端
飞哥数智坊1 小时前
AI 写代码总跑偏?试试费曼学习法:让它先复述一遍!
人工智能·ai编程
东坡肘子1 小时前
Sora 2:好模型,但未必是好生意 | 肘子的 Swift 周报 #0105
人工智能·swiftui·swift
yzx9910131 小时前
国庆科技感祝福:Python 粒子国旗动画
开发语言·人工智能·python