基于Sparse Optical Flow 的Homography estimation

python 复制代码
import copy
import time

import cv2
import numpy as np


def draw_kpts(image0, image1, mkpts0, mkpts1, margin=10):
    H0, W0 = image0.shape
    H1, W1 = image1.shape
    H, W = max(H0, H1), W0 + W1 + margin
    out = 255 * np.ones((H, W), np.uint8)
    out[:H0, :W0] = image0
    out[:H1, W0+margin:] = image1
    out = np.stack([out]*3, -1)

    mkpts0, mkpts1 = np.round(mkpts0).astype(int), np.round(mkpts1).astype(int)
    # print(f"mkpts0.shape : {mkpts0.shape}")
    c = (0, 255, 0)
    for (new, old) in zip(mkpts0, mkpts1):
        x0, y0 = new.ravel()
        x1, y1 = old.ravel()
        # print(f"x0 : {x0}")
        # cv2.line(out, (x0, y0), (x1 + margin + W0, y1),
        #         color=c, thickness=1, lineType=cv2.LINE_AA)
        # display line end-points as circles
        cv2.circle(out, (x0, y0), 2, c, -1, lineType=cv2.LINE_AA)
        cv2.circle(out, (x1 + margin + W0, y1), 2, c, -1,
                lineType=cv2.LINE_AA)
        
    return out

if __name__ == "__main__":
    img0Path = "/training/datasets/orchard/orchard_imgs_/000130.jpg"
    img1Path = "/training/datasets/orchard/orchard_imgs_/000132.jpg"

    img0 = cv2.imread(img0Path, 0)
    img1 = cv2.imread(img1Path, 0)
    h, w = img0.shape

    mask = np.zeros_like(img0)
    mask[int(0.02 * h): int(0.98 * h), int(0.02 * w): int(0.98 * w)] = 255

    keypoints = cv2.goodFeaturesToTrack(
                img0,
                mask=mask,
                maxCorners=2048,
                qualityLevel=0.01,
                minDistance=1,
                blockSize=3,
                useHarrisDetector=False,
                k=0.04
            )
    print(f"keypoints , size : {keypoints.shape}")

    next_keypoints, status, err = cv2.calcOpticalFlowPyrLK(
                img0, img1, keypoints, None
            )
    
    H, _ = cv2.estimateAffinePartial2D(
                keypoints, next_keypoints, cv2.RANSAC
            )
    
    print(f"H : {H}")

    out = draw_kpts(img0, img1, keypoints , next_keypoints)
    cv2.imwrite("keypoints.jpg", out)
相关推荐
lianyinghhh22 分钟前
瓦力机器人-舵机控制(基于树莓派5)
人工智能·python·自然语言处理·硬件工程
小殊小殊26 分钟前
超越CNN:GCN如何重塑图像处理
图像处理·人工智能·深度学习
康语智能1 小时前
科技赋能成长,小康AI家庭医生守护童真
人工智能·科技
WLJT1231231231 小时前
科技赋能塞上农业:宁夏从黄土地到绿硅谷的蝶变
大数据·人工智能·科技
StarPrayers.1 小时前
旅行商问题(TSP)(2)(heuristics.py)(TSP 的两种贪心启发式算法实现)
前端·人工智能·python·算法·pycharm·启发式算法
koo3641 小时前
李宏毅机器学习笔记21
人工智能·笔记·机器学习
Bony-2 小时前
奶茶销售数据分析
人工智能·数据挖掘·数据分析·lstm
山烛2 小时前
YOLO v1:目标检测领域的单阶段革命之作
人工智能·yolo·目标检测·计算机视觉·yolov1
华仔AI智能体2 小时前
Qwen3(通义千问3)、OpenAI GPT-5、DeepSeek 3.2、豆包最新模型(Doubao 4.0)通用模型能力对比
人工智能·python·语言模型·agent·智能体