基于Sparse Optical Flow 的Homography estimation

python 复制代码
import copy
import time

import cv2
import numpy as np


def draw_kpts(image0, image1, mkpts0, mkpts1, margin=10):
    H0, W0 = image0.shape
    H1, W1 = image1.shape
    H, W = max(H0, H1), W0 + W1 + margin
    out = 255 * np.ones((H, W), np.uint8)
    out[:H0, :W0] = image0
    out[:H1, W0+margin:] = image1
    out = np.stack([out]*3, -1)

    mkpts0, mkpts1 = np.round(mkpts0).astype(int), np.round(mkpts1).astype(int)
    # print(f"mkpts0.shape : {mkpts0.shape}")
    c = (0, 255, 0)
    for (new, old) in zip(mkpts0, mkpts1):
        x0, y0 = new.ravel()
        x1, y1 = old.ravel()
        # print(f"x0 : {x0}")
        # cv2.line(out, (x0, y0), (x1 + margin + W0, y1),
        #         color=c, thickness=1, lineType=cv2.LINE_AA)
        # display line end-points as circles
        cv2.circle(out, (x0, y0), 2, c, -1, lineType=cv2.LINE_AA)
        cv2.circle(out, (x1 + margin + W0, y1), 2, c, -1,
                lineType=cv2.LINE_AA)
        
    return out

if __name__ == "__main__":
    img0Path = "/training/datasets/orchard/orchard_imgs_/000130.jpg"
    img1Path = "/training/datasets/orchard/orchard_imgs_/000132.jpg"

    img0 = cv2.imread(img0Path, 0)
    img1 = cv2.imread(img1Path, 0)
    h, w = img0.shape

    mask = np.zeros_like(img0)
    mask[int(0.02 * h): int(0.98 * h), int(0.02 * w): int(0.98 * w)] = 255

    keypoints = cv2.goodFeaturesToTrack(
                img0,
                mask=mask,
                maxCorners=2048,
                qualityLevel=0.01,
                minDistance=1,
                blockSize=3,
                useHarrisDetector=False,
                k=0.04
            )
    print(f"keypoints , size : {keypoints.shape}")

    next_keypoints, status, err = cv2.calcOpticalFlowPyrLK(
                img0, img1, keypoints, None
            )
    
    H, _ = cv2.estimateAffinePartial2D(
                keypoints, next_keypoints, cv2.RANSAC
            )
    
    print(f"H : {H}")

    out = draw_kpts(img0, img1, keypoints , next_keypoints)
    cv2.imwrite("keypoints.jpg", out)
相关推荐
王中阳Go6 分钟前
字节开源 Eino 框架上手体验:Go 语言终于有能打的 Agent 编排工具了(含 RAG 实战代码)
人工智能·后端·go
天竺鼠不该去劝架11 分钟前
免费RPA工具有哪些?主流产品详解与选型指南
人工智能
骚戴18 分钟前
LLM API 全方位实战指南:从 AI 大模型API选型到高效应用开发(2025年12月)
人工智能·大模型·llm·api·ai gateway
FL162386312922 分钟前
轴承表面缺陷检测数据集VOC+YOLO格式2064张8类别
人工智能·yolo·机器学习
岁月宁静25 分钟前
AI 多模态全栈项目实战:Vue3 + Node 打造 TTS+ASR 全家桶!
vue.js·人工智能·node.js
Funny_AI_LAB32 分钟前
Zcode:智谱AI推出的轻量级 AI IDE 编程利器
人工智能·python·算法·编辑器
亚里随笔44 分钟前
偏离主路径:RLVR在参数空间中的非主方向学习机制
人工智能·深度学习·学习
共绩算力1 小时前
Dolphin-v2:拍照论文也能实现精准解析
人工智能·共绩算力
沃达德软件1 小时前
视频侦查技术揭秘
人工智能·opencv·计算机视觉·视觉检测·音视频·实时音视频·视频编解码
鲨莎分不晴1 小时前
深度学习轻量化算子:从公式证明到数值计算
人工智能·深度学习