基于Sparse Optical Flow 的Homography estimation

python 复制代码
import copy
import time

import cv2
import numpy as np


def draw_kpts(image0, image1, mkpts0, mkpts1, margin=10):
    H0, W0 = image0.shape
    H1, W1 = image1.shape
    H, W = max(H0, H1), W0 + W1 + margin
    out = 255 * np.ones((H, W), np.uint8)
    out[:H0, :W0] = image0
    out[:H1, W0+margin:] = image1
    out = np.stack([out]*3, -1)

    mkpts0, mkpts1 = np.round(mkpts0).astype(int), np.round(mkpts1).astype(int)
    # print(f"mkpts0.shape : {mkpts0.shape}")
    c = (0, 255, 0)
    for (new, old) in zip(mkpts0, mkpts1):
        x0, y0 = new.ravel()
        x1, y1 = old.ravel()
        # print(f"x0 : {x0}")
        # cv2.line(out, (x0, y0), (x1 + margin + W0, y1),
        #         color=c, thickness=1, lineType=cv2.LINE_AA)
        # display line end-points as circles
        cv2.circle(out, (x0, y0), 2, c, -1, lineType=cv2.LINE_AA)
        cv2.circle(out, (x1 + margin + W0, y1), 2, c, -1,
                lineType=cv2.LINE_AA)
        
    return out

if __name__ == "__main__":
    img0Path = "/training/datasets/orchard/orchard_imgs_/000130.jpg"
    img1Path = "/training/datasets/orchard/orchard_imgs_/000132.jpg"

    img0 = cv2.imread(img0Path, 0)
    img1 = cv2.imread(img1Path, 0)
    h, w = img0.shape

    mask = np.zeros_like(img0)
    mask[int(0.02 * h): int(0.98 * h), int(0.02 * w): int(0.98 * w)] = 255

    keypoints = cv2.goodFeaturesToTrack(
                img0,
                mask=mask,
                maxCorners=2048,
                qualityLevel=0.01,
                minDistance=1,
                blockSize=3,
                useHarrisDetector=False,
                k=0.04
            )
    print(f"keypoints , size : {keypoints.shape}")

    next_keypoints, status, err = cv2.calcOpticalFlowPyrLK(
                img0, img1, keypoints, None
            )
    
    H, _ = cv2.estimateAffinePartial2D(
                keypoints, next_keypoints, cv2.RANSAC
            )
    
    print(f"H : {H}")

    out = draw_kpts(img0, img1, keypoints , next_keypoints)
    cv2.imwrite("keypoints.jpg", out)
相关推荐
互联网之声3 分钟前
崔传波教授:以科技与人文之光,点亮近视患者的清晰视界‌
人工智能
lily363926046a3 分钟前
智联未来 点赋科技
大数据·人工智能
聚客AI4 分钟前
🍬传统工程师转型:智能体架构师的技能图谱
人工智能·agent·mcp
lihuayong5 分钟前
AI赋能金融研报自动化生成:智能体系统架构与实现
人工智能·金融研报自动化
架构师日志7 分钟前
Google开源框架LangExtract实践(1)——Docker部署,免费、低碳、无需GPU、多种大模型灵活切换,绝对可用!
人工智能
嘀咕博客8 分钟前
MiniMax - 稀宇科技推出的AI智能助手
人工智能·科技·ai工具
九章云极AladdinEdu12 分钟前
深度学习优化器进化史:从SGD到AdamW的原理与选择
linux·服务器·开发语言·网络·人工智能·深度学习·gpu算力
dlraba80218 分钟前
Python 实战:票据图像自动矫正技术拆解与落地教程
人工智能·opencv·计算机视觉
过河卒_zh156676638 分钟前
9.13AI简报丨哈佛医学院开源AI模型,Genspark推出AI浏览器
人工智能·算法·microsoft·aigc·算法备案·生成合成类算法备案
程序员ken42 分钟前
深入理解大语言模型(5)-关于token
人工智能·语言模型·自然语言处理