Anaconda配置pytorch的基本操作

创建环境地址大概率默认是c盘,如何处理:

方法 1:使用 -p 参数指定环境路径

复制代码
conda create -p D:\conda_envs\pytorch_cpu python=3.x

如果用 -p 指定路径,需要使用完整路径来激活环境,例如 conda activate D:\conda_envs\pytorch_cpu,而不是只用环境名称。

复制代码
conda activate D:\conda_envs\pytorch_cpu

方法 2:更改 Conda 默认环境路径

如果你想让 Conda 的环境始终在 D 盘创建,你可以通过设置 conda 的配置文件来更改默认路径。

打开命令行(CMD 或者 Anaconda Prompt),输入以下命令来更改默认环境存储路径:

复制代码
conda config --add envs_dirs D:\conda_envs

检查更改是否生效:

复制代码
conda config --show envs_dirs

输出应该包含你刚刚添加的路径:D:\conda_envs

这样,之后你每次使用 conda create -n 命令时,新的环境都会被创建到 D:\conda_envs 目录下。


创建虚拟环境命名 可指定python版本

conda create -n pytorch_cpu python=3.x

删除虚拟环境

conda env remove -n pytorch_cpu

查看当前计算机几个虚拟环境 a是详细信息

conda info -e

conda info -a

查看当前的库

conda list

激活环境命名

conda activate pytorch_cpu

寻找该激活环境命名python解释器位置

where python

安装pytorch(https://pytorch.org/get-started/locally/)

conda install pytorch torchvision torchaudio cpuonly -c pytorch

检查gpu可用吗如果是gpu就是True

python

import torch

print(torch.cuda.is_available())

exit()

如果是gpu就是True

要在虚拟环境再安装一次

conda pip install jupyter notebook

退出虚拟环境

conda deactivate

相关推荐
人工智能培训2 分钟前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·深度学习·机器学习·transformer·知识图谱·数字孪生·大模型幻觉
板面华仔7 分钟前
机器学习入门(二)——逻辑回归 (Logistic Regression)
python·机器学习
Hgfdsaqwr8 分钟前
使用Flask快速搭建轻量级Web应用
jvm·数据库·python
emma羊羊14 分钟前
【AI技术安全】
网络·人工智能·安全
玄同76515 分钟前
告别 AgentExecutor:LangChain v1.0+ Agent 模块深度迁移指南与实战全解析
人工智能·语言模型·自然语言处理·langchain·nlp·agent·智能体
GHZhao_GIS_RS17 分钟前
python中的sort和sorted用法汇总
python·排序·列表
永恒的溪流21 分钟前
环境出问题,再修改
pytorch·python·深度学习
ruxshui22 分钟前
Python多线程环境下连接对象的线程安全管理规范
开发语言·数据库·python·sql
Fxrain22 分钟前
[Reading Paper]FFA-Net
图像处理·人工智能·计算机视觉
GISer_Jing23 分钟前
Memory、Rules、Skills、MCP如何重塑AI编程
前端·人工智能·aigc·ai编程