Anaconda配置pytorch的基本操作

创建环境地址大概率默认是c盘,如何处理:

方法 1:使用 -p 参数指定环境路径

复制代码
conda create -p D:\conda_envs\pytorch_cpu python=3.x

如果用 -p 指定路径,需要使用完整路径来激活环境,例如 conda activate D:\conda_envs\pytorch_cpu,而不是只用环境名称。

复制代码
conda activate D:\conda_envs\pytorch_cpu

方法 2:更改 Conda 默认环境路径

如果你想让 Conda 的环境始终在 D 盘创建,你可以通过设置 conda 的配置文件来更改默认路径。

打开命令行(CMD 或者 Anaconda Prompt),输入以下命令来更改默认环境存储路径:

复制代码
conda config --add envs_dirs D:\conda_envs

检查更改是否生效:

复制代码
conda config --show envs_dirs

输出应该包含你刚刚添加的路径:D:\conda_envs

这样,之后你每次使用 conda create -n 命令时,新的环境都会被创建到 D:\conda_envs 目录下。


创建虚拟环境命名 可指定python版本

conda create -n pytorch_cpu python=3.x

删除虚拟环境

conda env remove -n pytorch_cpu

查看当前计算机几个虚拟环境 a是详细信息

conda info -e

conda info -a

查看当前的库

conda list

激活环境命名

conda activate pytorch_cpu

寻找该激活环境命名python解释器位置

where python

安装pytorch(https://pytorch.org/get-started/locally/)

conda install pytorch torchvision torchaudio cpuonly -c pytorch

检查gpu可用吗如果是gpu就是True

python

import torch

print(torch.cuda.is_available())

exit()

如果是gpu就是True

要在虚拟环境再安装一次

conda pip install jupyter notebook

退出虚拟环境

conda deactivate

相关推荐
GitCode官方3 小时前
YOLO11 与 Wan2.2‑I2V‑A14B 正式上线 AtomGit AI:开启视觉感知与动态生成新纪元!
人工智能·计算机视觉·目标跟踪·开源·atomgit
BBB努力学习程序设计3 小时前
Python异步编程完全指南:从asyncio到高性能应用
python·pycharm
deephub3 小时前
机器学习时间特征处理:循环编码(Cyclical Encoding)与其在预测模型中的应用
人工智能·python·机器学习·特征工程·时间序列
Gofarlic_oms13 小时前
集中式 vs 分布式许可:跨地域企业的管控架构选择
大数据·运维·人工智能·分布式·架构·数据挖掘·需求分析
追光天使3 小时前
Python 连接数据库并遍历数据
python
机器学习之心3 小时前
科研绘图 | PSO-LSTM粒子群优化长短期记忆神经网络模型结构图
人工智能·神经网络·lstm·pso-lstm
BBB努力学习程序设计3 小时前
Python迭代器与生成器深度解析:懒加载的艺术
python·pycharm
meizisay3 小时前
亿可达_自动发邮件攻略
人工智能·经验分享·低代码·职场和发展·自动化
褪色的博客3 小时前
强化学习入门:核心概念与数学基础详解
人工智能
dazzle3 小时前
OpenCV基础教学(二):图像的灰度化处理
python·opencv·计算机视觉