术语“in law”(在分布上)

在概率论和统计学中,术语"in law"(在分布上)指的是随机变量的分布收敛到某个目标分布的情况。下面是对这个概念及其在定理中的应用的详细解释


"In Law"(在分布上)的含义

定义:

如果 { Y n } \{Y_n\} {Yn}是一系列随机变量,并且它们的分布函数 F Y n ( x ) F_{Y_n}(x) FYn(x) 对于所有 x x x 收敛于某个目标分布函数 F Y ( x ) F_Y(x) FY(x),即:
lim ⁡ n → ∞ F Y n ( x ) = F Y ( x ) 对于所有 x 使得 F Y ( x ) 是连续的 , \lim_{n \to \infty} F_{Y_n}(x) = F_Y(x) \text{ 对于所有 } x \text{ 使得 } F_Y(x) \text{ 是连续的}, n→∞limFYn(x)=FY(x) 对于所有 x 使得 FY(x) 是连续的,

则我们说随机变量 Y n Y_n Yn 收敛于随机变量 Y Y Y 的分布,记作:
Y n → d Y Y_n \xrightarrow{d} Y Ynd Y


Y n → L Y Y_n \xrightarrow{L} Y YnL Y

定理 2.3.2 的含义

定理: 如果 Y n Y_n Yn 在分布上收敛于一个分布 H H H,那么 Y n Y_n Yn 是在概率上有界的。

解释:

  • 收敛在分布上(Convergence in Law/Distribution) :表示随机变量 Y n Y_n Yn 的分布函数 F Y n ( x ) F_{Y_n}(x) FYn(x) 随着 n n n 的增大趋向于分布函数 F H ( x ) F_H(x) FH(x)。

  • 概率上有界(Bounded in Probability) :意味着存在一个常数 M M M,对于任意 ϵ > 0 \epsilon > 0 ϵ>0,都有:
    P ( ∣ Y n ∣ > M ) ≤ ϵ P(|Y_n| > M) \leq \epsilon P(∣Yn∣>M)≤ϵ

    即 Y n Y_n Yn 的绝对值不会超过 M M M 的概率可以使得小于任意的 ϵ \epsilon ϵ。这表明 Y n Y_n Yn 的值在概率上被控制在某个有限范围内。

为何"in law"意味着概率上有界

虽然"在分布上收敛"说明了分布的收敛性,但定理中指出,如果 Y n Y_n Yn 的分布收敛于某个目标分布 H H H,那么 Y n Y_n Yn 必定在概率上有界。这意味着虽然随机变量的分布变化,但是它们的值在某个有限范围内的概率趋向于1,不会无限增大。

相关推荐
luoganttcc2 天前
柯尔莫哥洛夫对概率论的公理化体系有哪些贡献?
概率论
望十五江洋3 天前
泊松分布的参数可加性
线性代数·机器学习·概率论
lybugproducer3 天前
深度学习专题:模型训练的数据并行(三)
人工智能·深度学习·概率论
Small___ming5 天前
【人工智能数学基础】多元高斯分布
人工智能·机器学习·概率论
RE-19016 天前
《深入浅出统计学》学习笔记(二)
大数据·数学·概率论·统计学·数理统计·知识笔记·深入浅出
Small___ming8 天前
【人工智能数学基础】什么是高斯分布/正态分布?
人工智能·概率论
Small___ming9 天前
【人工智能数学基础】如何理解方差与协方差?
人工智能·概率论
月疯11 天前
样本熵和泊松指数的计算流程!!!
算法·机器学习·概率论
zyq~11 天前
【课堂笔记】概率论-3
笔记·概率论
RE-190111 天前
《深入浅出统计学》学习笔记(一)
大数据·数学·概率论·统计学·数理统计·知识笔记·深入浅出