作者:计算机学姐
开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,"文末源码"。
系统展示
【2025最新】基于python+django+vue+MySQL的影视推荐系统,前后端分离。
- 开发语言:python
- 数据库:MySQL
- 技术:python、django、vue
- 工具:IDEA/Ecilpse、Navicat、Maven
前台界面
后台界面
摘要
本文设计并实现了一个基于Python、Django后端框架与Vue前端框架的影视推荐系统。该系统通过整合用户行为数据、影视内容信息及评分系统,利用机器学习算法如协同过滤或基于内容的推荐技术,为用户提供个性化影视推荐服务。系统后端采用Django构建RESTful API,实现数据的增删改查及推荐逻辑处理;前端Vue.js则负责界面的动态渲染与用户交互,提升用户体验。整体架构实现了前后端分离,增强了系统的可维护性和可扩展性。
研究意义
随着互联网视频内容的爆炸式增长,用户面临信息过载问题,难以从海量影视资源中快速找到符合个人喜好的内容。本研究通过构建影视推荐系统,旨在提高用户获取感兴趣影视作品的效率与满意度,促进内容消费。同时,对影视平台而言,个性化推荐能增强用户粘性,提升平台竞争力,实现商业价值的最大化。此外,本研究也为相似领域内的推荐系统建设提供了实践参考和技术支持。
研究目的
本研究的主要目的在于开发一个高效、准确的影视推荐系统,该系统能够:1) 收集并分析用户行为数据,构建用户画像;2) 整合影视资源信息,构建内容特征库;3) 设计并实现一套有效的推荐算法,根据用户画像与影视特征进行精准匹配;4) 通过前后端分离的技术架构,实现推荐结果的实时展示与互动,优化用户体验;5) 评估推荐系统的性能与效果,不断调整优化算法,提高推荐准确率与用户满意度。
文档目录
[1.1 研究背景](#1.1 研究背景)
[1.2 研究意义](#1.2 研究意义)
[1.3 研究现状](#1.3 研究现状)
[1.4 研究内容](#1.4 研究内容)
2.相关技术
[2.1 Python语言](#2.1 Python语言)
[2.2 B/S架构](#2.2 B/S架构)
[2.3 MySQL数据库](#2.3 MySQL数据库)
[2.4 Django框架](#2.4 Django框架)
[2.5 Vue框架](#2.5 Vue框架)
3.系统分析
[3.1 系统可行性分析](#3.1 系统可行性分析)
[3.1.1 技术可行性分析](#3.1.1 技术可行性分析)
[3.1.2 经济可行性分析](#3.1.2 经济可行性分析)
[3.1.3 操作可行性分析](#3.1.3 操作可行性分析)
[3.2 系统性能分析](#3.2 系统性能分析)
[3.2.1 易用性指标](#3.2.1 易用性指标)
[3.2.2 可扩展性指标](#3.2.2 可扩展性指标)
[3.2.3 健壮性指标](#3.2.3 健壮性指标)
[3.2.4 安全性指标](#3.2.4 安全性指标)
[3.3 系统流程分析](#3.3 系统流程分析)
[3.3.1 操作流程分析](#3.3.1 操作流程分析)
[3.3.2 登录流程分析](#3.3.2 登录流程分析)
[3.3.3 信息添加流程分析](#3.3.3 信息添加流程分析)
[3.3.4 信息删除流程分析](#3.3.4 信息删除流程分析)
[3.4 系统功能分析](#3.4 系统功能分析)
4.系统设计
[4.1 系统概要设计](#4.1 系统概要设计)
[4.2 系统功能结构设计](#4.2 系统功能结构设计)
[4.3 数据库设计](#4.3 数据库设计)
[4.3.1 数据库E-R图设计](#4.3.1 数据库E-R图设计)
[4.3.2 数据库表结构设计](#4.3.2 数据库表结构设计)
5.系统实现
[5.1 前台功能实现](#5.1 前台功能实现)
[5.2 后台功能实现](#5.2 后台功能实现)
6.系统测试
[6.1 测试目的及方法](#6.1 测试目的及方法)
[6.2 系统功能测试](#6.2 系统功能测试)
[6.2.1 登录功能测试](#6.2.1 登录功能测试)
[6.2.2 添加功能测试](#6.2.2 添加功能测试)
[6.2.3 删除功能测试](#6.2.3 删除功能测试)
[6.3 测试结果分析](#6.3 测试结果分析)
代码
python
from django.db import models
class Movie(models.Model):
title = models.CharField(max_length=255)
description = models.TextField(blank=True)
release_year = models.IntegerField()
rating = models.FloatField(default=0.0)
def __str__(self):
return self.title
class UserProfile(models.Model):
user = models.OneToOneField(settings.AUTH_USER_MODEL, on_delete=models.CASCADE)
# 可以添加用户相关的其他字段,如年龄、性别等
class UserRating(models.Model):
user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE)
movie = models.ForeignKey(Movie, on_delete=models.CASCADE)
rating = models.FloatField()
class Meta:
unique_together = (('user', 'movie'),)
总结
本研究成功构建了一个基于Python+Django+Vue的影视推荐系统,通过综合运用数据处理、算法设计与前端开发技术,实现了个性化影视推荐服务。系统不仅提升了用户的观影体验,也为影视平台带来了商业价值。未来,随着技术的发展与数据量的增加,将进一步探索更先进的推荐算法,优化系统性能,以满足用户日益增长的个性化需求。
获取源码
一键三连噢~