大语言模型的发展-OPENBMB

一、自然语言处理的基础

1、图灵测试 就是验证人工智能程序有多智能

让计算机像人一样,能够听懂问题,然后给出答案;

自然语言发展历史:

advances in Natural Lannguage Processing --论文

2、自然语言处理的基本任务和应用

2.1任务:

词性质(动词,名词),命名实体识别(人名,地名,机构名),共指消解(it,she代指的是谁),句法的理论(主谓宾,定状补),中文分词任务

2.2 应用:

1、搜索引擎,query和document的相似段

搜索引擎出广告:文本匹配的问题

2、知识图谱:是搜索引擎重要的点

query如何找知识图谱的实体,如何构建知识图谱

使用自然语言处理,把一篇文章,识别出哪些实体是有关系,然后自动输出到知识图谱中,用于后续的知识图谱的查询

3、个人助手

智能音箱,理解人说的话给出回复

4、机器翻译

5、情感分类和意见挖掘

6、社会科学 books.google.com/ngrams

3、词表示:就要把我们说的词转换为计算机可以理解的表示

3.1 one hot 表示

任何一个词都表示词表大小的向量

star 【0,0,1,0,0】

sun【0,1,0,0,0

3.2 上下文表示词

词向量的长度也是字典的大小,但是向量中每个值的是上下文中出现的次数

3.3 word embedding

word2vector 方法,使用一个低维度的向量就是表示一个高纬度的向量且信息不丢失

语言模型

根据前面的词预测后面的词

语言模型的假设:后面的词只依赖前面的词;马尔可夫的假设

N-gram模型 使用条件概率和联合概率计算下一个词,每个词都是一个符号没有啥含义

问题:上下文不能特别大;词之间的相似度是独立的

Neural labaguage Model 模型

使用前面说的wordembedding表示的向量

大模型基础知识

word2vec,RNN,Elmo,Bert

预训练语言模型 作为nlp领域的基础工具

预训练语言模型:从无标注数据学习,使用任务相关数据进行微调,最终获取行业的大模型

这种方式也叫迁移学习

相关推荐
叶子爱分享1 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜1 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿1 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_1 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1231 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
学技术的大胜嗷1 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
还有糕手2 小时前
西南交通大学【机器学习实验10】
人工智能·机器学习
江瀚视野2 小时前
百度文心大模型4.5系列正式开源,开源会给百度带来什么?
人工智能
聚铭网络2 小时前
案例精选 | 某省级税务局AI大数据日志审计中台应用实践
大数据·人工智能·web安全
涛神-DevExpress资深开发者3 小时前
DevExpress V25.1 版本更新,开启控件AI新时代
人工智能·devexpress·v25.1·ai智能控件