大语言模型的发展-OPENBMB

一、自然语言处理的基础

1、图灵测试 就是验证人工智能程序有多智能

让计算机像人一样,能够听懂问题,然后给出答案;

自然语言发展历史:

advances in Natural Lannguage Processing --论文

2、自然语言处理的基本任务和应用

2.1任务:

词性质(动词,名词),命名实体识别(人名,地名,机构名),共指消解(it,she代指的是谁),句法的理论(主谓宾,定状补),中文分词任务

2.2 应用:

1、搜索引擎,query和document的相似段

搜索引擎出广告:文本匹配的问题

2、知识图谱:是搜索引擎重要的点

query如何找知识图谱的实体,如何构建知识图谱

使用自然语言处理,把一篇文章,识别出哪些实体是有关系,然后自动输出到知识图谱中,用于后续的知识图谱的查询

3、个人助手

智能音箱,理解人说的话给出回复

4、机器翻译

5、情感分类和意见挖掘

6、社会科学 books.google.com/ngrams

3、词表示:就要把我们说的词转换为计算机可以理解的表示

3.1 one hot 表示

任何一个词都表示词表大小的向量

star 【0,0,1,0,0】

sun【0,1,0,0,0

3.2 上下文表示词

词向量的长度也是字典的大小,但是向量中每个值的是上下文中出现的次数

3.3 word embedding

word2vector 方法,使用一个低维度的向量就是表示一个高纬度的向量且信息不丢失

语言模型

根据前面的词预测后面的词

语言模型的假设:后面的词只依赖前面的词;马尔可夫的假设

N-gram模型 使用条件概率和联合概率计算下一个词,每个词都是一个符号没有啥含义

问题:上下文不能特别大;词之间的相似度是独立的

Neural labaguage Model 模型

使用前面说的wordembedding表示的向量

大模型基础知识

word2vec,RNN,Elmo,Bert

预训练语言模型 作为nlp领域的基础工具

预训练语言模型:从无标注数据学习,使用任务相关数据进行微调,最终获取行业的大模型

这种方式也叫迁移学习

相关推荐
政安晨27 分钟前
政安晨【零基础玩转开源AI项目】- AutoGPT:全球首个自主AI Agent从入门到实战(致敬OpenClaw的小回顾)
人工智能·ai·autogpt·全球首个agent框架·致敬openclaw之作·参考价值·ai开源agent框架
Shawn_Shawn5 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
技术路上的探险家7 小时前
8 卡 V100 服务器:基于 vLLM 的 Qwen 大模型高效部署实战
运维·服务器·语言模型
33三 三like7 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a7 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者8 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗8 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_9 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信9 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann