水下目标检测数据集 urpc2021

项目背景:

水下目标检测在海洋科学研究、水下考古、海洋资源勘探等多个领域具有重要的应用价值。由于水下环境的复杂性和多变性,传统的人工检测方法存在诸多限制,自动化检测技术的需求日益增加。URPC2021数据集旨在为水下目标检测提供高质量的标注数据,支持自动化检测系统的开发与应用。

数据集概述:
  • 名称:URPC2021水下目标检测数据集
  • 规模:具体数量未给出,假设为一定规模的数据集
  • 标注格式:XML格式的标注文件,符合Pascal VOC标准
  • 类别:多个水下目标类别(具体类别需根据数据集实际内容确定)
数据集特点:
  1. 全面性:涵盖水下环境中常见的目标类型,确保数据集的多样性和实用性。
  2. 高质量标注:每张图像都已详细标注,确保数据的准确性和可靠性。
  3. 适用范围广:采用广泛使用的Pascal VOC XML格式,方便科研人员和开发者直接使用。
  4. 标准格式:采用Pascal VOC XML格式的标注文件,兼容多种目标检测框架。
数据集内容:
  • 具体类别:具体类别需根据数据集实际内容确定,可能包括但不限于鱼类、珊瑚、水下机器人、海洋垃圾等水下目标。
数据集用途:
  1. 目标检测:可用于训练和评估深度学习模型,特别是在水下目标检测方面。
  2. 科学研究:帮助实现水下环境的科学研究,减少人工检测的工作量。
  3. 科研与教育:为水下目标检测领域的研究和教学提供丰富的数据支持。
使用场景:
  1. 实时监控:在海洋监测系统中,利用该数据集训练的模型可以实时识别水下目标。
  2. 物种普查:在物种普查和研究中,利用该数据集可以提高物种识别的准确性和速度。
  3. 生产管理:在海洋资源开发和保护工作中,利用该数据集可以提高工作效率和管理水平。
技术指标:
  • 数据量:具体数量需根据数据集实际内容确定。
  • 数据划分:数据集是否进行了训练集、验证集和测试集的划分,需根据数据集实际内容确定。
  • 标注格式:采用Pascal VOC XML格式的标注文件,方便导入不同的检测框架。
  • 标注精度:所有图像均已详细标注,确保数据的准确性和可靠性。
注意事项:
  • 数据隐私:在使用过程中,请确保遵守相关法律法规,保护个人隐私。
  • 数据预处理:在使用前,建议进行一定的数据预处理,如图像归一化等。
获取方式:
  • 下载链接:请访问项目主页获取数据集下载链接。
  • 许可证:请仔细阅读数据集的使用许可协议。
关键代码示例:

以下是关键代码的示例,包括数据加载、模型训练、检测和结果展示。

数据加载(以VOC格式为例):
复制代码

python

深色版本

复制代码
1import os
2import cv2
3import xml.etree.ElementTree as ET
4import numpy as np
5
6# 数据集路径
7DATASET_PATH = 'path/to/dataset'
8IMAGES_DIR = os.path.join(DATASET_PATH, 'JPEGImages')
9ANNOTATIONS_DIR = os.path.join(DATASET_PATH, 'Annotations')
10
11# 加载数据集
12def load_dataset(directory):
13    images = []
14    annotations = []
15
16    for img_file in os.listdir(IMAGES_DIR):
17        if img_file.endswith('.jpg') or img_file.endswith('.png'):
18            img_path = os.path.join(IMAGES_DIR, img_file)
19            annotation_path = os.path.join(ANNOTATIONS_DIR, img_file.replace('.jpg', '.xml').replace('.png', '.xml'))
20            
21            image = cv2.imread(img_path)
22            tree = ET.parse(annotation_path)
23            root = tree.getroot()
24            
25            objects = []
26            for obj in root.findall('object'):
27                bbox = obj.find('bndbox')
28                xmin = int(bbox.find('xmin').text)
29                ymin = int(bbox.find('ymin').text)
30                xmax = int(bbox.find('xmax').text)
31                ymax = int(bbox.find('ymax').text)
32                objects.append([xmin, ymin, xmax, ymax])
33            
34            images.append(image)
35            annotations.append(objects)
36
37    return images, annotations
38
39train_images, train_annotations = load_dataset(os.path.join(DATASET_PATH, 'train'))
40val_images, val_annotations = load_dataset(os.path.join(DATASET_PATH, 'val'))
41test_images, test_annotations = load_dataset(os.path.join(DATASET_PATH, 'test'))
模型训练:
复制代码

python

深色版本

复制代码
1# 初始化YOLOv8模型
2model = YOLO('yolov8n.pt')
3
4# 转换VOC格式到YOLO格式
5def convert_voc_to_yolo(annotations, image_shape=(640, 640)):
6    yolo_annotations = []
7    for ann in annotations:
8        converted = []
9        for obj in ann:
10            x_center = (obj[0] + obj[2]) / 2 / image_shape[1]
11            y_center = (obj[1] + obj[3]) / 2 / image_shape[0]
12            width = (obj[2] - obj[0]) / image_shape[1]
13            height = (obj[3] - obj[1]) / image_shape[0]
14            converted.append([0, x_center, y_center, width, height])
15        yolo_annotations.append(converted)
16    return yolo_annotations
17
18# 定义训练参数
19EPOCHS = 100
20BATCH_SIZE = 16
21
22# 转换并训练模型
23train_yolo_annots = convert_voc_to_yolo(train_annotations)
24val_yolo_annots = convert_voc_to_yolo(val_annotations)
25
26results = model.train(data='underwater_target_detection.yaml', epochs=EPOCHS, batch=BATCH_SIZE)
模型检测:
复制代码

python

深色版本

复制代码
1# 加载训练好的模型
2model = YOLO('best.pt')
3
4# 检测图像
5def detect_underwater_targets(image):
6    results = model.predict(image)
7    for result in results:
8        boxes = result.boxes
9        for box in boxes:
10            x1, y1, x2, y2 = box.xyxy[0]
11            conf = box.conf
12            class_id = box.cls
13            
14            # 显示结果
15            cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
16            cv2.putText(image, f'Target, Conf: {conf:.2f}', (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
17    
18    return image
19
20# 测试图像
21test_image = cv2.imread('path/to/test_image.jpg')
22result_image = detect_underwater_targets(test_image)
23cv2.imshow('Detected Underwater Targets', result_image)
24cv2.waitKey(0)
25cv2.destroyAllWindows()
配置文件 underwater_target_detection.yaml
复制代码

yaml

深色版本

复制代码
1train: path/to/train/images
2val: path/to/val/images
3test: path/to/test/images
4
5nc: 1  # Number of classes
6names: ['Target']  # Class name
7
8# Training parameters
9batch_size: 16
10epochs: 100
11img_size: [640, 640]  # Image size
使用指南:
  1. 数据准备:确保数据集路径正确,并且数据集已准备好。
  2. 模型训练:运行训练脚本,等待训练完成。
  3. 模型检测:使用训练好的模型进行检测,并查看检测结果。
结语:

本数据集提供了一个高质量的水下目标检测数据集,支持自动化目标检测、科学研究等多个应用场景。通过利用该数据集训练的模型,可以提高水下目标检测的效率和准确性。

相关推荐
极智视界4 天前
无人机场景 - 目标检测数据集 - 垂直视角车辆检测数据集下载
yolo·数据集·无人机·车辆检测·voc·coco·垂直视角
jay神7 天前
基于深度学习的交通流量预测系统
人工智能·深度学习·自然语言处理·数据集·计算机毕业设计
极智视界8 天前
无人机场景 - 目标检测数据集 - 停车场停车位检测数据集下载
yolo·目标检测·数据集·无人机·voc·coco·算法训练
前网易架构师-高司机8 天前
带标注信息的手机识别数据集,92.8%识别率,可识别户外公共场所的人是否带手机,支持yolo, coco json,pascal voc xml格式
yolo·手机·数据集·公共·户外·携带
极智视界8 天前
目标检测数据集 - 空中固定翼无人机检测数据集下载
yolo·目标检测·数据集·无人机·voc·coco·算法训练
地球资源数据云8 天前
【最新更新】中国2000-2025平均值合成白天地表温度(LST)年度数据集
数据分析·数据集·遥感数据
音沐mu.8 天前
YOLO目标检测数据集大全【数据集+训练好的模型+训练检测教程】(持续更新)
人工智能·yolo·目标检测·数据集
前网易架构师-高司机10 天前
带标注信息的大块煤识别数据集下载,可识别大块煤,支持yolo,coco json,pascal voc xml格式,正确识别率77.6%
yolo·数据集··大块煤
地球资源数据云10 天前
【免费下载】中国5米分辨率坡度数据
数据分析·数据集·遥感数据
2401_8414956410 天前
【数据挖掘】Apriori算法
python·算法·数据挖掘·数据集·关联规则挖掘·关联规则·频繁项集挖掘