【Elasticsearch】-实现向量相似检索

1、http请求方式

如果elasticsearch服务设置账号密码,则在请求的header中添加 Basic Auth 认证

请求方式:Post

请求地址:/index_name/_search

请求body:json格式

复制代码
{
 "size": 10, //返回条数
 "min_score": 0.8,  // 设置最低相似分值
 "_source": ["file_name", "length", "_es_doc_type"],  // 只返回指定字段
  "query": {
    "script_score": {
      "query": {
        "match_all": {}
      },
      "script": {
	    // _img_vector 为设置的向量索引字段
        "source": "cosineSimilarity(params.query_vector, '_img_vector') + 0.0",
        "params": {
          "query_vector": [-1,1,-0.07559559,-0.007800484,0.11229578,0.064164124,....]
        }
      }
    }
  }
}

主要参数说明:

  • "from": 0, // 起始位置,0表示第一页
  • "size": 10, // 每页返回的记录数
  • "min_score": 0.5, //最低相似度,最高1
  • "_source": ["image_id", "image_name", "image_vector"], // 返回指定字段

返回结果如下:

复制代码
{
	"took": 3,
	"timed_out": false,
	"_shards": {
		"total": 1,
		"successful": 1,
		"skipped": 0,
		"failed": 0
	},
	"hits": {
		"total": {
			"value": 1,
			"relation": "eq"
		},
		"max_score": 0.9014968,
		"hits": [
			{
				"_index": "vedms",
				"_type": "_doc",
				"_id": "04a40e806be82e87f3c3a2f3877225bd.jpg",
				"_score": 0.9014968,
				"_source": {
					"file_name": "04a40e806be82e87f3c3a2f3877225bd.jpg",
					"_es_doc_type": "IMAGE",
					"length": 89690
				}
			}
		]
	}
}

需要确保传入的query_vector 长度一致性,前面的章节中以设定1024长度。

否则会出现如下错误:

"reason": {

"type": "script_exception",

"reason": "runtime error",

"script_stack": [

"org.elasticsearch.xpack.vectors.query.ScoreScriptUtils$DenseVectorFunction.<init>(ScoreScriptUtils.java:74)",

"org.elasticsearch.xpack.vectors.query.ScoreScriptUtils$CosineSimilarity.<init>(ScoreScriptUtils.java:172)",

"cosineSimilarity(params.query_vector, '_img_vector') + 0.0",

"

],

"script": "cosineSimilarity(params.query_vector, '_img_vector') + 0.0",

"lang": "painless",

"position": {

"offset": 38,

"start": 0,

"end": 58

},

"caused_by": {

"type": "illegal_argument_exception",

"reason": "The query vector has a different number of dimensions [1023] than the document vectors [1024]."

}

}

2、Java调用脚本

SearchRequest 不允许在script设置 _source 属性内容,所以干脆将from、size、score一并拿出,只保留vector数据

_img_vector为前面定义的向量索引字段

复制代码
public List<Map<String, Object>> search(EsVectorSearchReq req) {
        float[] vector = getImgFeature(req);
        if (null == vector || vector.length == 0) {
            return Collections.emptyList();
        }
        String queryJson = String.format(VECTOR_FORMAT, vectorToJson(vector));
        log.debug("向量检索入参条件={}", queryJson);
        Reader input = new StringReader(queryJson);
        // 使用查询 DSL 进行搜索
        SearchRequest searchRequest = new SearchRequest.Builder()
                .index(req.getIndexLib())
                .from(req.getFrom())
                .size(req.getSize())
                .minScore(req.getScore())
                .source(SourceConfig.of(src -> src
                        .filter(SourceFilter.of(i -> i.includes(req.getColumns())))))
                .withJson(input)
                .build();

        // 执行查询
        List<Map<String, Object>> result = new ArrayList<>();
        try {
            SearchResponse<Map> searchResponse = esClient.search(searchRequest, Map.class);
            // 输出结果
            for (Hit<Map> hit : searchResponse.hits().hits()) {
                result.add(hit.source());
            }
            log.info("成功查询{}条", result.size());
        } catch (IOException e) {
            e.printStackTrace();
        }
        return result;
    }



private String vectorToJson(float[] vector) {
        StringBuilder sb = new StringBuilder("[");
        for (int i = 0; i < vector.length; i++) {
            sb.append(vector[i]);
            if (i < vector.length - 1) {
                sb.append(",");
            }
        }
        sb.append("]");
        return sb.toString();
    }

private static final String VECTOR_FORMAT = "{\n" +
            "  \"query\": {\n" +
            "    \"script_score\": {\n" +
            "      \"query\": {\n" +
            "        \"match_all\": {}\n" +
            "      },\n" +
            "      \"script\": {\n" +
            "        \"source\": \"cosineSimilarity(params.query_vector, 'img_vector') + 0.0\",\n" +
            "        \"params\": {\n" +
            "          \"query_vector\": %s\n" +
            "        }\n" +
            "      }\n" +
            "    }\n" +
            "  }\n" +
            "}";

传入参数格式如下:

复制代码
{
  "query": {
    "script_score": {
      "query": {
        "match_all": {}
      },
      "script": {
        "source": "cosineSimilarity(params.query_vector, '_img_vector') + 0.0",
        "params": {
          "query_vector": [-0.033....]
        }
      }
    }
  }
}

返回结果如下:

{

"_shards": {

"failed": 0.0,

"skipped": 0.0,

"successful": 1.0,

"total": 1.0

},

"hits": {

"hits": [

{

"_id": "04a40e806be82e87f3c3a2f3877225bd.jpg",

"_index": "vedms",

"_score": 1.0,

"_source": "{file_name=04a40e806be82e87f3c3a2f3877225bd.jpg}",

"_type": "_doc"

}

],

"max_score": 1.0,

"total": {

"relation": "eq",

"value": 1

}

},

"timed_out": false,

"took": 46

}

相关推荐
摇滚侠29 分钟前
ElasticSearch 教程入门到精通,测试工具、倒排索引、索引创建查询删除,笔记6、7、8、9
大数据·笔记·elasticsearch
若水不如远方1 小时前
告别 RestHighLevelClient:Elasticsearch Java 新客户端实战与源码浅析
java·elasticsearch
武子康2 小时前
大数据-177 Elasticsearch 聚合实战:指标聚合 + 桶聚合完整用法与 DSL 解析
大数据·后端·elasticsearch
码农阿豪2 小时前
用 Rust 构建 Git 提交历史可视化工具
git·elasticsearch·rust
玉离骚2 小时前
ElasticSearch 安装教程
大数据·elasticsearch
铭毅天下2 小时前
Elasticsearch 9.X 官方文档大变样了!
大数据·elasticsearch·搜索引擎·全文检索
leijmdas2 小时前
git操作命令
大数据·git·elasticsearch
Adellle3 小时前
windows安装ES(8.14.x版本)
大数据·windows·elasticsearch
摇滚侠3 小时前
ElasticSearch 是什么,ES 是什么?
大数据·elasticsearch·搜索引擎
摇滚侠3 小时前
ElasticSearch 教程入门到精通,条件分页排序查询,多条件范围查询,完全匹配高亮查询,聚合查询,映射关系,笔记13、14、15、16、17
大数据·笔记·elasticsearch