lora 微调3B模型微调前有5G 量化f16 后最后导出模型容量变小了只有2G了,为什么?

环境:

lora 微调

问题描述:

lora 微调3B模型微调前有5G 量化f16 后最后导出模型容量变小了只有2G了,为什么?

解决方案:

在使用LoRA(Low-Rank Adaptation)对大语言模型(例如一个3B参数的模型)进行微调时,模型最终导出的容量变小可能是由于以下几个原因:

1. 量化

你提到量化为FP16(16位浮点数)。量化过程可以显著减少模型的存储需求。原始模型可能是以FP32(32位浮点数)存储的,而将其量化为FP16会直接将存储需求减半。具体的计算如下:

  • FP32: 每个参数占用4字节。
  • FP16: 每个参数占用2字节。

通过这种转换,模型的大小可以从5G减少到约2.5G(理论上)。这已经解释了一部分的容量减小。

2. LoRA微调

LoRA微调方法通过将原始权重分解成低秩矩阵来实现模型参数的高效更新,而不是直接对整个模型进行更新。LoRA微调主要更新的是分解矩阵,而这些矩阵通常要比原始模型的参数少得多。因此,导出的微调模型容量可能会进一步减少,因为只需存储这些低秩矩阵以及部分更新的参数,而不是整个模型的所有参数。

3. 剪枝和优化

在微调和量化过程中,可能还会进行一些剪枝(Pruning)和进一步的优化来减少模型的大小。剪枝可以去除对模型性能影响不大的权重,从而减小模型容量。

4. 存储格式优化

在导出模型时,可能采用了更高效的存储格式。例如使用更紧凑的存储结构、压缩算法等。现代深度学习框架(如TensorFlow、PyTorch)有时会自动采用某些压缩技巧来优化存储。

总结

通过量化、LoRA微调、剪枝和存储格式优化等方法的组合,最终导出的模型容量通常会比原始模型显著减少。从5G减少到2G是这些多重因素共同作用的结果。

如果你有特定的工具或框架,可以查看其文档了解详细的模型优化和存储机制。这将有助于你更准确地理解模型大小变化的原因。如果有更多具体问题或需要进一步详细解释,请随时告知!

相关推荐
Eric.Lee20218 分钟前
数据集-目标检测系列- 花卉 玫瑰 检测数据集 rose >> DataBall
人工智能·目标检测·计算机视觉
清流君9 分钟前
【运动规划】移动机器人运动规划与轨迹优化全解析 | 经典算法总结
人工智能·笔记·算法·机器人·自动驾驶·运动规划
IT古董7 小时前
【机器学习】超简明Python基础教程
开发语言·人工智能·python·机器学习
算家云7 小时前
VideoCrafter模型部署教程
人工智能·深度学习·机器学习·显卡·算力·视频生成·ai视频编辑
曼城周杰伦7 小时前
表格不同类型的数据如何向量化?
人工智能·机器学习·分类·数据挖掘·sklearn·word2vec
AIGC方案7 小时前
免费下载 | 2024年中国人工智能教育蓝皮书
人工智能·百度
斐夷所非8 小时前
OpenAI Adjusts Strategy as ‘GPT’ AI Progress Slow
人工智能
凡人的AI工具箱8 小时前
15分钟学 Go 实战项目六 :统计分析工具项目(30000字完整例子)
开发语言·数据库·人工智能·后端·golang
知新_ROL8 小时前
GPT promote 论文学术润色提示词
人工智能·深度学习
皓7418 小时前
3C产品说明书电子化转变:用户体验、环保与商业机遇的共赢
人工智能·ux