深度学习参数管理

1.访问参数

我们从已有模型中访问参数。当通过`Sequential`类定义模型时,我们可以通过索引来访问模型的任意层。

· 检查第二个全连接层的参数。

print(net[2].state_dict())

print(net[2].bias)

print(net[2].bias.data)

net[2].weight

print(*[(name, param.shape) for name, param in net[0].named_parameters()])

print(*[(name, param.shape) for name, param in net.named_parameters()])

2.参数初始化

· 内置初始化

def init_normal(m):

if type(m) == nn.Linear:

nn.init.normal_(m.weight, mean=0, std=0.01)

nn.init.zeros_(m.bias)

net.apply(init_normal)

net[0].weight.data[0], net[0].bias.data[0] #输出

· 不同的层采用不同的初始化

def init_xavier(m):

if type(m) == nn.Linear:

nn.init.xavier_uniform_(m.weight)

def init_42(m):

if type(m) == nn.Linear:

nn.init.constant_(m.weight, 42)

net[0].apply(init_xavier)

net[2].apply(init_42)

print(net[0].weight.data[0])

print(net[2].weight.data)

3.共享参数

我们需要给共享层一个名称,以便可以引用它的参数

shared = nn.Linear(8, 8)

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),

shared, nn.ReLU(),

shared, nn.ReLU(),

nn.Linear(8, 1))

net(X)

检查参数是否相同

print(net[2].weight.data[0] == net[4].weight.data[0])

net[2].weight.data[0, 0] = 100

确保它们实际上是同一个对象,而不只是有相同的值

print(net[2].weight.data[0] == net[4].weight.data[0])

相关推荐
梯度下降不了班32 分钟前
【mmodel/xDit】Cross-Attention 深度解析:文生图/文生视频的核心桥梁
人工智能·深度学习·ai作画·stable diffusion·音视频·transformer
第二只羽毛1 小时前
主题爬虫采集主题新闻信息
大数据·爬虫·python·网络爬虫
plmm烟酒僧1 小时前
TensorRT 推理 YOLO Demo 分享 (Python)
开发语言·python·yolo·tensorrt·runtime·推理
天才测试猿1 小时前
Postman中变量的使用详解
自动化测试·软件测试·python·测试工具·职场和发展·接口测试·postman
帕巴啦1 小时前
Arcgis计算面要素的面积、周长、宽度、长度及最大直径
python·arcgis
AI小云1 小时前
【数据操作与可视化】Matplotlib绘图-生成其他图表类型
开发语言·python·matplotlib
MediaTea2 小时前
Python 第三方库:plotnine(类 ggplot 的 Python 数据可视化库)
开发语言·python·信息可视化
齐齐大魔王2 小时前
深度学习(三)
人工智能·深度学习
yzx9910132 小时前
卷积神经网络(CNN):深度学习的视觉革命者
人工智能·机器学习
路边草随风2 小时前
python 调用 spring ai sse mcp
人工智能·python·spring