深度学习参数管理

1.访问参数

我们从已有模型中访问参数。当通过`Sequential`类定义模型时,我们可以通过索引来访问模型的任意层。

· 检查第二个全连接层的参数。

print(net[2].state_dict())

print(net[2].bias)

print(net[2].bias.data)

net[2].weight

print(*[(name, param.shape) for name, param in net[0].named_parameters()])

print(*[(name, param.shape) for name, param in net.named_parameters()])

2.参数初始化

· 内置初始化

def init_normal(m):

if type(m) == nn.Linear:

nn.init.normal_(m.weight, mean=0, std=0.01)

nn.init.zeros_(m.bias)

net.apply(init_normal)

net[0].weight.data[0], net[0].bias.data[0] #输出

· 不同的层采用不同的初始化

def init_xavier(m):

if type(m) == nn.Linear:

nn.init.xavier_uniform_(m.weight)

def init_42(m):

if type(m) == nn.Linear:

nn.init.constant_(m.weight, 42)

net[0].apply(init_xavier)

net[2].apply(init_42)

print(net[0].weight.data[0])

print(net[2].weight.data)

3.共享参数

我们需要给共享层一个名称,以便可以引用它的参数

shared = nn.Linear(8, 8)

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),

shared, nn.ReLU(),

shared, nn.ReLU(),

nn.Linear(8, 1))

net(X)

检查参数是否相同

print(net[2].weight.data[0] == net[4].weight.data[0])

net[2].weight.data[0, 0] = 100

确保它们实际上是同一个对象,而不只是有相同的值

print(net[2].weight.data[0] == net[4].weight.data[0])

相关推荐
闲人编程2 小时前
Python在网络安全中的应用:编写一个简单的端口扫描器
网络·python·web安全·硬件·端口·codecapsule·扫描器
大大dxy大大4 小时前
机器学习实现逻辑回归-癌症分类预测
机器学习·分类·逻辑回归
武子康4 小时前
AI研究-119 DeepSeek-OCR PyTorch FlashAttn 2.7.3 推理与部署 模型规模与资源详细分析
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
Mr_Xuhhh5 小时前
GUI自动化测试--自动化测试的意义和应用场景
python·集成测试
2301_764441335 小时前
水星热演化核幔耦合数值模拟
python·算法·数学建模
循环过三天5 小时前
3.4、Python-集合
开发语言·笔记·python·学习·算法
Q_Q5110082855 小时前
python+django/flask的眼科患者随访管理系统 AI智能模型
spring boot·python·django·flask·node.js·php
忙碌5446 小时前
AI大模型时代下的全栈技术架构:从深度学习到云原生部署实战
人工智能·深度学习·架构
没有钱的钱仔7 小时前
机器学习笔记
人工智能·笔记·机器学习
听风吹等浪起7 小时前
基于改进TransUNet的港口船只图像分割系统研究
人工智能·深度学习·cnn·transformer