深度学习参数管理

1.访问参数

我们从已有模型中访问参数。当通过`Sequential`类定义模型时,我们可以通过索引来访问模型的任意层。

· 检查第二个全连接层的参数。

print(net[2].state_dict())

print(net[2].bias)

print(net[2].bias.data)

net[2].weight

print(*[(name, param.shape) for name, param in net[0].named_parameters()])

print(*[(name, param.shape) for name, param in net.named_parameters()])

2.参数初始化

· 内置初始化

def init_normal(m):

if type(m) == nn.Linear:

nn.init.normal_(m.weight, mean=0, std=0.01)

nn.init.zeros_(m.bias)

net.apply(init_normal)

net[0].weight.data[0], net[0].bias.data[0] #输出

· 不同的层采用不同的初始化

def init_xavier(m):

if type(m) == nn.Linear:

nn.init.xavier_uniform_(m.weight)

def init_42(m):

if type(m) == nn.Linear:

nn.init.constant_(m.weight, 42)

net[0].apply(init_xavier)

net[2].apply(init_42)

print(net[0].weight.data[0])

print(net[2].weight.data)

3.共享参数

我们需要给共享层一个名称,以便可以引用它的参数

shared = nn.Linear(8, 8)

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),

shared, nn.ReLU(),

shared, nn.ReLU(),

nn.Linear(8, 1))

net(X)

检查参数是否相同

print(net[2].weight.data[0] == net[4].weight.data[0])

net[2].weight.data[0, 0] = 100

确保它们实际上是同一个对象,而不只是有相同的值

print(net[2].weight.data[0] == net[4].weight.data[0])

相关推荐
kebijuelun3 分钟前
DeepSeek Engram:给大模型新增一条“记忆稀疏”轴
人工智能·深度学习·语言模型·transformer
Ashley_Amanda7 分钟前
Python入门知识点梳理
开发语言·windows·python
香草泡芙12 分钟前
AI Agent 深度解析:原理、架构与未来应用浪潮
人工智能·深度学习·机器学习
tjjucheng12 分钟前
小程序定制开发哪家有完整流程
python
桓峰基因12 分钟前
桓峰基因临床数据分析及机器学习预测模型构建教程
人工智能·机器学习·数据挖掘·数据分析
海棠AI实验室15 分钟前
第十二章 类型标注与可读性:让协作与复用更容易
python
羊村积极分子懒羊羊21 分钟前
python课程三月二十九号粗略总结
开发语言·python
深圳蔓延科技22 分钟前
Python算法学习分享
python
aloha_78922 分钟前
langchain4j如何使用mcp
java·人工智能·python·langchain
yunhuibin23 分钟前
CNN基础学习
人工智能·python·深度学习·神经网络