深度学习参数管理

1.访问参数

我们从已有模型中访问参数。当通过`Sequential`类定义模型时,我们可以通过索引来访问模型的任意层。

· 检查第二个全连接层的参数。

print(net[2].state_dict())

print(net[2].bias)

print(net[2].bias.data)

net[2].weight

print(*[(name, param.shape) for name, param in net[0].named_parameters()])

print(*[(name, param.shape) for name, param in net.named_parameters()])

2.参数初始化

· 内置初始化

def init_normal(m):

if type(m) == nn.Linear:

nn.init.normal_(m.weight, mean=0, std=0.01)

nn.init.zeros_(m.bias)

net.apply(init_normal)

net[0].weight.data[0], net[0].bias.data[0] #输出

· 不同的层采用不同的初始化

def init_xavier(m):

if type(m) == nn.Linear:

nn.init.xavier_uniform_(m.weight)

def init_42(m):

if type(m) == nn.Linear:

nn.init.constant_(m.weight, 42)

net[0].apply(init_xavier)

net[2].apply(init_42)

print(net[0].weight.data[0])

print(net[2].weight.data)

3.共享参数

我们需要给共享层一个名称,以便可以引用它的参数

shared = nn.Linear(8, 8)

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),

shared, nn.ReLU(),

shared, nn.ReLU(),

nn.Linear(8, 1))

net(X)

检查参数是否相同

print(net[2].weight.data[0] == net[4].weight.data[0])

net[2].weight.data[0, 0] = 100

确保它们实际上是同一个对象,而不只是有相同的值

print(net[2].weight.data[0] == net[4].weight.data[0])

相关推荐
island13148 分钟前
CANN GE(图引擎)深度解析:计算图优化管线、内存静态规划与异构任务的 Stream 调度机制
开发语言·人工智能·深度学习·神经网络
艾莉丝努力练剑8 分钟前
深度学习视觉任务:如何基于ops-cv定制图像预处理流程
人工智能·深度学习
禁默14 分钟前
大模型推理的“氮气加速系统”:全景解读 Ascend Transformer Boost (ATB)
人工智能·深度学习·transformer·cann
User_芊芊君子15 分钟前
CANN大模型加速核心ops-transformer全面解析:Transformer架构算子的高性能实现与优化
人工智能·深度学习·transformer
摘星编程15 分钟前
深入理解CANN ops-nn BatchNormalization算子:训练加速的关键技术
python
魔芋红茶16 分钟前
Python 项目版本控制
开发语言·python
lili-felicity23 分钟前
CANN批处理优化技巧:从动态批处理到流水线并行
人工智能·python
一个有梦有戏的人25 分钟前
Python3基础:进阶基础,筑牢编程底层能力
后端·python
dazzle33 分钟前
机器学习算法原理与实践-入门(三):使用数学方法实现KNN
人工智能·算法·机器学习
摘星编程42 分钟前
解析CANN ops-nn中的Transpose算子:张量维度变换的高效实现
python