深度学习参数管理

1.访问参数

我们从已有模型中访问参数。当通过`Sequential`类定义模型时,我们可以通过索引来访问模型的任意层。

· 检查第二个全连接层的参数。

print(net[2].state_dict())

print(net[2].bias)

print(net[2].bias.data)

net[2].weight

print(*[(name, param.shape) for name, param in net[0].named_parameters()])

print(*[(name, param.shape) for name, param in net.named_parameters()])

2.参数初始化

· 内置初始化

def init_normal(m):

if type(m) == nn.Linear:

nn.init.normal_(m.weight, mean=0, std=0.01)

nn.init.zeros_(m.bias)

net.apply(init_normal)

net[0].weight.data[0], net[0].bias.data[0] #输出

· 不同的层采用不同的初始化

def init_xavier(m):

if type(m) == nn.Linear:

nn.init.xavier_uniform_(m.weight)

def init_42(m):

if type(m) == nn.Linear:

nn.init.constant_(m.weight, 42)

net[0].apply(init_xavier)

net[2].apply(init_42)

print(net[0].weight.data[0])

print(net[2].weight.data)

3.共享参数

我们需要给共享层一个名称,以便可以引用它的参数

shared = nn.Linear(8, 8)

net = nn.Sequential(nn.Linear(4, 8), nn.ReLU(),

shared, nn.ReLU(),

shared, nn.ReLU(),

nn.Linear(8, 1))

net(X)

检查参数是否相同

print(net[2].weight.data[0] == net[4].weight.data[0])

net[2].weight.data[0, 0] = 100

确保它们实际上是同一个对象,而不只是有相同的值

print(net[2].weight.data[0] == net[4].weight.data[0])

相关推荐
engchina12 分钟前
如何在 Python 中忽略烦人的警告?
开发语言·人工智能·python
paixiaoxin1 小时前
CV-OCR经典论文解读|An Empirical Study of Scaling Law for OCR/OCR 缩放定律的实证研究
人工智能·深度学习·机器学习·生成对抗网络·计算机视觉·ocr·.net
Dream_Snowar1 小时前
速通Python 第四节——函数
开发语言·python·算法
西猫雷婶1 小时前
python学opencv|读取图像(十四)BGR图像和HSV图像通道拆分
开发语言·python·opencv
weixin_515202491 小时前
第R3周:RNN-心脏病预测
人工智能·rnn·深度学习
Altair澳汰尔1 小时前
数据分析和AI丨知识图谱,AI革命中数据集成和模型构建的关键推动者
人工智能·算法·机器学习·数据分析·知识图谱
call me by ur name2 小时前
VLM--CLIP作分类任务的损失函数
人工智能·机器学习·分类
汪洪墩2 小时前
【Mars3d】设置backgroundImage、map.scene.skyBox、backgroundImage来回切换
开发语言·javascript·python·ecmascript·webgl·cesium
Python机器学习AI2 小时前
分类模型的预测概率解读:3D概率分布可视化的直观呈现
算法·机器学习·分类
dwjf3213 小时前
机器学习(四)-回归模型评估指标
人工智能·机器学习·线性回归