目录

遥感图像目标检测数据集-DOTA数据集

DOTA数据集(v1.0版本和v1.5版本),训练集1411张,验证集458张,测试集若干,共16种类别。数据集图片大小不一,需要进行裁剪,可设置裁剪重叠大小以及裁剪图片大小。此处按照默认参数裁剪,重叠200像素,大小1024×1024,删除空白标签后得到训练集11119张,验证集3626张,提供yolo归一化txt格式标签。

数据集名称

DOTA数据集 v1.0 版本 和 v1.5 版本

数据集概述

DOTA数据集(Detection of Objects from TOp-down perspectives)是一个专为遥感图像中的目标检测设计的大规模数据集。该数据集涵盖了16种不同的类别,包括飞机、船舶、棒球场、桥、车辆、风力发电机等,适用于遥感图像中的小目标检测任务。DOTA数据集因其广泛的类别和多样化的图像背景,成为了遥感图像分析领域的重要基准之一。

数据集特点
  1. 类别丰富:包含16种不同类型的遥感目标,涵盖了从大型结构(如桥梁、棒球场)到小型移动物体(如飞机、车辆)。
  2. 图像多样性:图像大小不一,来源于不同的视角和地理位置,提供了丰富的图像背景和光照条件。
  3. 精细标注:每个目标都被仔细标注,提供了准确的位置信息。
  4. 数据处理:为了便于处理和训练模型,数据集中的图像按照默认参数裁剪成1024×1024像素大小,重叠200像素,去除了空白标签。
  5. 标签格式:提供了YOLO格式的归一化标签文件,方便用户直接导入现有的YOLO训练流程。
数据集构成
  • 类别

    • Plane(飞机)
    • Ship(船)
    • Storage-tank(储油罐)
    • Baseball-diamond(棒球场)
    • Tennis-court(网球场)
    • Bridge(桥)
    • Ground-track-field(田径场)
    • Large-vehicle(大型车辆)
    • Small-vehicle(小型车辆)
    • Helicopter(直升机)
    • Swiming-pool(游泳池)
    • Roundabout(环形交叉路口)
    • Soccer-ball-field(足球场)
    • Container-crane(集装箱起重机)
    • Wind-mill(风力发电机)
    • Harbor(港口)
  • 原始图像数量

    • 训练集:1411张
    • 验证集:458张
    • 测试集:若干
  • 裁剪后图像数量

    • 训练集:11119张
    • 验证集:3626张
  • 图像大小:1024×1024像素,重叠200像素

  • 标签格式:YOLO归一化txt格式

数据集用途
  • 目标检测:用于训练和测试遥感图像中的目标检测算法。
  • 遥感分析:在实际应用中,可以用于自动化识别和分类遥感图像中的目标,如城市规划、灾害评估、军事侦察等。
  • 研究与开发:为研究人员提供一个基准数据集,用于比较不同算法的效果。
  • 教育与培训:作为教学资源,帮助学生理解计算机视觉和遥感图像处理的基本概念。
应用案例
  • 城市规划:通过检测建筑物、道路等基础设施,辅助城市规划师制定更合理的规划方案。
  • 环境保护:监测森林砍伐、河流污染等环境问题。
  • 军事侦察:识别和跟踪敌方设施或活动。
  • 灾害响应:快速评估地震、洪水等自然灾害的影响范围。
数据集
示例代码

下面是一个简单的示例代码,展示了如何使用Python加载和预览DOTA数据集中的图像及其YOLO格式的标签信息.

复制代码
1import os
2import random
3import matplotlib.pyplot as plt
4import numpy as np
5
6# 数据集目录路径
7data_dir = 'path/to/dota_dataset'
8image_dir = os.path.join(data_dir, 'images')
9label_dir = os.path.join(data_dir, 'labels')
10
11# 随机选择一张图像
12image_files = os.listdir(image_dir)
13image_file = random.choice(image_files)
14image_path = os.path.join(image_dir, image_file)
15
16# 加载图像
17image = plt.imread(image_path)
18
19# 加载YOLO标签
20label_file = os.path.splitext(image_file)[0] + '.txt'
21label_path = os.path.join(label_dir, label_file)
22
23with open(label_path, 'r') as f:
24    lines = f.readlines()
25    
26# 解析YOLO标签
27class_names = ['Plane', 'Ship', 'Storage-tank', 'Baseball-diamond', 'Tennis-court', 'Bridge', 
28               'Ground-track-field', 'Large-vehicle', 'Small-vehicle', 'Helicopter', 'Swiming-pool', 
29               'Roundabout', 'Soccer-ball-field', 'Container-crane', 'Wind-mill', 'Harbor']
30
31for line in lines:
32    class_id, x_center, y_center, width, height = map(float, line.strip().split())
33    x_min = int((x_center - width / 2) * image.shape[1])
34    y_min = int((y_center - height / 2) * image.shape[0])
35    x_max = int((x_center + width / 2) * image.shape[1])
36    y_max = int((y_center + height / 2) * image.shape[0])
37    
38    # 在图像上绘制边界框
39    plt.gca().add_patch(plt.Rectangle((x_min, y_min), x_max - x_min, y_max - y_min, edgecolor='r', facecolor='none'))
40    plt.text(x_min, y_min, class_names[int(class_id)], color='r', fontsize=8)
41
42# 绘制图像
43plt.figure(figsize=(10, 10))
44plt.imshow(image)
45plt.axis('off')
46plt.show()

总结

DOTA数据集是一个高质量的遥感图像目标检测数据集,涵盖了16种不同类型的遥感目标。数据集的特点是类别丰富、图像多样性高和精细标注,能够满足不同研究需求。通过使用该数据集,研究者可以在遥感图像分析领域推动技术进步,提高目标检测的准确性和效率。

本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
OpenBayes4 天前
OpenBayes 一周速览|1分钟生成完整音乐,DiffRhythm人声伴奏一键搞定; Stable Virtual Camera重塑3D视频创作
人工智能·深度学习·数据集·llama·视频生成·推理·蛋白质突变
黎明鱼儿9 天前
LLaMA-Factory 数据集成从入门到精通
数据集·大模型微调·llama-factory
mozun202011 天前
无人机等非合作目标公开数据集2025.4.3
数据集·无人机·空间目标·微波·可见光
dundunmm11 天前
【数据集】Romanov数据集
人工智能·机器学习·支持向量机·数据挖掘·数据集·单细胞数据集
zew104099458817 天前
基于深度学习的手势识别系统设计
人工智能·深度学习·算法·数据集·pyqt·yolov5·训练模型
幽络源小助理18 天前
杂草YOLO系列数据集4000张
yolo·数据集
数据堂官方账号1 个月前
数据驱动进化:AI Agent如何重构手机交互范式?
人工智能·智能手机·重构·数据集·ai大模型·ai agent
前网易架构师-高司机1 个月前
停车场停车位数据集,标注停车位上是否有车,平均正确识别率99.5%,支持yolov5-11, coco json,darknet,xml格式标注
yolo·数据集·停车场·车位·停车
@HNUSTer1 个月前
基于 GEE 的城市热岛效应分析——可视化地表温度 LST 与归一化植被指数 NDVI 的关联
云计算·数据集·遥感大数据·gee·云平台
@HNUSTer1 个月前
基于 GEE 利用 Sentinel-2 数据反演叶绿素与冠层水分含量
云计算·数据集·遥感大数据·gee·云平台