使用python对图像批量水平变换和垂直变换

水平变换

python 复制代码
import os
import cv2

# 设置源文件夹路径
src_folder = r'C:\Users\TJ\Desktop\tmp\origin'

# 设置目标文件夹路径
dst_folder = r'C:\Users\TJ\Desktop\tmp\enhanced'

# 确保目标文件夹存在
if not os.path.exists(dst_folder):
    os.makedirs(dst_folder)

# 遍历源文件夹中的图像文件
for filename in os.listdir(src_folder):
    # 检查是否为图像文件
    if filename.endswith('.jpg') or filename.endswith('.png'):
        # 构造源图像路径
        src_path = os.path.join(src_folder, filename)

        # 读取图像
        img = cv2.imread(src_path)

        # 对图像进行水平翻转
        flipped_img = cv2.flip(img, 1)

        # 构造目标图像路径
        dst_path = os.path.join(dst_folder, 'horizontalflip_' + filename)

        # 保存翻转后的图像
        cv2.imwrite(dst_path, flipped_img)

        print(f'Saved flipped image: {dst_path}')

垂直变换

python 复制代码
import os
import cv2

# 设置源文件夹和目标文件夹路径
src_folder = r'C:\Users\TJ\Desktop\tmp\origin'
dst_folder = r'C:\Users\TJ\Desktop\tmp\enhanced'

# 创建目标文件夹(如果不存在)
os.makedirs(dst_folder, exist_ok=True)

# 遍历源文件夹中的图像文件
for filename in os.listdir(src_folder):
    # 检查是否为图像文件
    if filename.endswith(('.jpg', '.png', '.bmp')):
        # 构建源文件路径和目标文件路径
        src_path = os.path.join(src_folder, filename)

        # 读取图像
        img = cv2.imread(src_path)

        # 执行垂直变换
        flipped_img = cv2.flip(img, 0)  # 0表示垂直翻转
        dst_path = os.path.join(dst_folder, 'verticalflip_' + filename)

        # 将变换后的图像保存到目标文件夹
        cv2.imwrite(dst_path, flipped_img)
        print(f'Saved flipped image: {dst_path}')

需要根据实际情况替换路径

对于深度学习,若将图像进行变换,变换后的图像的标注文件也需要进行调整

python 复制代码
import os

# 指定原始标注文件所在目录
orig_annot_dir = r''
# 指定翻转后图像所在目录
flipped_img_dir = r''

for annot_file in os.listdir(orig_annot_dir):
    annot_path = os.path.join(orig_annot_dir, annot_file)

    # 读取原始标注文件
    with open(annot_path, 'r') as f:
        lines = f.readlines()

    new_lines = []
    for line in lines:
        components = line.strip().split()
        print(f"Line: {line}")
        print(f"Components: {components}")

        class_id = components[0]
        x_center = float(components[1])
        y_center = float(components[2])
        width = float(components[3])
        height = float(components[4])

        # 水平翻转 x 坐标
        x_center_new = 1 - x_center

        # 将新坐标写入新的标注行
        new_line = f"{class_id} {x_center_new:.6f} {y_center:.6f} {width:.6f} {height:.6f}\n"
        new_lines.append(new_line)

    # 将新标注写入文件
    img_name = os.path.splitext(annot_file)[0]
    new_annot_path = os.path.join(flipped_img_dir, f"{img_name}.txt")
    with open(new_annot_path, 'w') as f:
        f.writelines(new_lines)
python 复制代码
import os

# 指定原始标注文件所在目录
orig_annot_dir = r''
# 指定垂直翻转后图像所在目录
flipped_img_dir = r''

for annot_file in os.listdir(orig_annot_dir):
    annot_path = os.path.join(orig_annot_dir, annot_file)

    # 读取原始标注文件
    with open(annot_path, 'r') as f:
        lines = f.readlines()

    new_lines = []
    for line in lines:
        components = line.strip().split()
        class_id = components[0]
        x_center = float(components[1])
        y_center = float(components[2])
        width = float(components[3])
        height = float(components[4])

        # 垂直翻转 y 坐标
        y_center_new = 1 - y_center

        # 将新坐标写入新的标注行
        new_line = f"{class_id} {x_center:.6f} {y_center_new:.6f} {width:.6f} {height:.6f}\n"
        new_lines.append(new_line)

    # 将新标注写入文件
    img_name = os.path.splitext(annot_file)[0]
    new_annot_path = os.path.join(flipped_img_dir, f"{img_name}.txt")
    with open(new_annot_path, 'w') as f:
        f.writelines(new_lines)
相关推荐
Learn-Python5 小时前
MongoDB-only方法
python·sql
小途软件6 小时前
用于机器人电池电量预测的Sarsa强化学习混合集成方法
java·人工智能·pytorch·python·深度学习·语言模型
扫地的小何尚6 小时前
NVIDIA RTX PC开源AI工具升级:加速LLM和扩散模型的性能革命
人工智能·python·算法·开源·nvidia·1024程序员节
wanglei2007086 小时前
生产者消费者
开发语言·python
清水白石0087 小时前
《从零到进阶:Pydantic v1 与 v2 的核心差异与零成本校验实现原理》
数据库·python
昵称已被吞噬~‘(*@﹏@*)’~7 小时前
【RL+空战】学习记录03:基于JSBSim构造简易空空导弹模型,并结合python接口调用测试
开发语言·人工智能·python·学习·深度强化学习·jsbsim·空战
2501_941877987 小时前
从配置热更新到运行时自适应的互联网工程语法演进与多语言实践随笔分享
开发语言·前端·python
酩酊仙人7 小时前
fastmcp构建mcp server和client
python·ai·mcp
格林威8 小时前
传送带上运动模糊图像复原:提升动态成像清晰度的 6 个核心方案,附 OpenCV+Halcon 实战代码!
人工智能·opencv·机器学习·计算机视觉·ai·halcon·工业相机
且去填词8 小时前
DeepSeek API 深度解析:从流式输出、Function Calling 到构建拥有“手脚”的 AI 应用
人工智能·python·语言模型·llm·agent·deepseek