使用python对图像批量水平变换和垂直变换

水平变换

python 复制代码
import os
import cv2

# 设置源文件夹路径
src_folder = r'C:\Users\TJ\Desktop\tmp\origin'

# 设置目标文件夹路径
dst_folder = r'C:\Users\TJ\Desktop\tmp\enhanced'

# 确保目标文件夹存在
if not os.path.exists(dst_folder):
    os.makedirs(dst_folder)

# 遍历源文件夹中的图像文件
for filename in os.listdir(src_folder):
    # 检查是否为图像文件
    if filename.endswith('.jpg') or filename.endswith('.png'):
        # 构造源图像路径
        src_path = os.path.join(src_folder, filename)

        # 读取图像
        img = cv2.imread(src_path)

        # 对图像进行水平翻转
        flipped_img = cv2.flip(img, 1)

        # 构造目标图像路径
        dst_path = os.path.join(dst_folder, 'horizontalflip_' + filename)

        # 保存翻转后的图像
        cv2.imwrite(dst_path, flipped_img)

        print(f'Saved flipped image: {dst_path}')

垂直变换

python 复制代码
import os
import cv2

# 设置源文件夹和目标文件夹路径
src_folder = r'C:\Users\TJ\Desktop\tmp\origin'
dst_folder = r'C:\Users\TJ\Desktop\tmp\enhanced'

# 创建目标文件夹(如果不存在)
os.makedirs(dst_folder, exist_ok=True)

# 遍历源文件夹中的图像文件
for filename in os.listdir(src_folder):
    # 检查是否为图像文件
    if filename.endswith(('.jpg', '.png', '.bmp')):
        # 构建源文件路径和目标文件路径
        src_path = os.path.join(src_folder, filename)

        # 读取图像
        img = cv2.imread(src_path)

        # 执行垂直变换
        flipped_img = cv2.flip(img, 0)  # 0表示垂直翻转
        dst_path = os.path.join(dst_folder, 'verticalflip_' + filename)

        # 将变换后的图像保存到目标文件夹
        cv2.imwrite(dst_path, flipped_img)
        print(f'Saved flipped image: {dst_path}')

需要根据实际情况替换路径

对于深度学习,若将图像进行变换,变换后的图像的标注文件也需要进行调整

python 复制代码
import os

# 指定原始标注文件所在目录
orig_annot_dir = r''
# 指定翻转后图像所在目录
flipped_img_dir = r''

for annot_file in os.listdir(orig_annot_dir):
    annot_path = os.path.join(orig_annot_dir, annot_file)

    # 读取原始标注文件
    with open(annot_path, 'r') as f:
        lines = f.readlines()

    new_lines = []
    for line in lines:
        components = line.strip().split()
        print(f"Line: {line}")
        print(f"Components: {components}")

        class_id = components[0]
        x_center = float(components[1])
        y_center = float(components[2])
        width = float(components[3])
        height = float(components[4])

        # 水平翻转 x 坐标
        x_center_new = 1 - x_center

        # 将新坐标写入新的标注行
        new_line = f"{class_id} {x_center_new:.6f} {y_center:.6f} {width:.6f} {height:.6f}\n"
        new_lines.append(new_line)

    # 将新标注写入文件
    img_name = os.path.splitext(annot_file)[0]
    new_annot_path = os.path.join(flipped_img_dir, f"{img_name}.txt")
    with open(new_annot_path, 'w') as f:
        f.writelines(new_lines)
python 复制代码
import os

# 指定原始标注文件所在目录
orig_annot_dir = r''
# 指定垂直翻转后图像所在目录
flipped_img_dir = r''

for annot_file in os.listdir(orig_annot_dir):
    annot_path = os.path.join(orig_annot_dir, annot_file)

    # 读取原始标注文件
    with open(annot_path, 'r') as f:
        lines = f.readlines()

    new_lines = []
    for line in lines:
        components = line.strip().split()
        class_id = components[0]
        x_center = float(components[1])
        y_center = float(components[2])
        width = float(components[3])
        height = float(components[4])

        # 垂直翻转 y 坐标
        y_center_new = 1 - y_center

        # 将新坐标写入新的标注行
        new_line = f"{class_id} {x_center:.6f} {y_center_new:.6f} {width:.6f} {height:.6f}\n"
        new_lines.append(new_line)

    # 将新标注写入文件
    img_name = os.path.splitext(annot_file)[0]
    new_annot_path = os.path.join(flipped_img_dir, f"{img_name}.txt")
    with open(new_annot_path, 'w') as f:
        f.writelines(new_lines)
相关推荐
SEVEN-YEARS2 分钟前
深入理解TensorFlow中的形状处理函数
人工智能·python·tensorflow
EterNity_TiMe_6 分钟前
【论文复现】(CLIP)文本也能和图像配对
python·学习·算法·性能优化·数据分析·clip
Suyuoa18 分钟前
附录2-pytorch yolov5目标检测
python·深度学习·yolo
只怕自己不够好35 分钟前
OpenCV 图像运算全解析:加法、位运算(与、异或)在图像处理中的奇妙应用
图像处理·人工智能·opencv
好看资源平台1 小时前
网络爬虫——综合实战项目:多平台房源信息采集与分析系统
爬虫·python
进击的六角龙2 小时前
深入浅出:使用Python调用API实现智能天气预报
开发语言·python
檀越剑指大厂2 小时前
【Python系列】浅析 Python 中的字典更新与应用场景
开发语言·python
湫ccc2 小时前
Python简介以及解释器安装(保姆级教学)
开发语言·python
孤独且没人爱的纸鹤2 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
羊小猪~~2 小时前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j