张正友相机标定算法

1.标定算法

2.标定误差

2.1相关定义

A 设计外参: 车型设计中,规定的相机装配外参, 一般从车厂数据模型中得到

B 实际外参: 相机安装后的实际外参

C 标定输出的外参: 标定算法输出的外参, 需要非常接近实际外参

D 超差阈值:算法判定,标定输出的外参与设计外参之间的差超过阈值,认定安装存在问题,需要返工或者维修.

2.2 外参工装误差

摄像头在产线安装时由于安装工艺,机械结构不精确、固定不牢固等原因造成的外参误差。

工装误差是实际外参与设计外参之间的误差.

工装误差如果在设计允许的误差范围内, 且后续外参标定准确,并不会影响到后续功能的运行.

根据已有经验[2022],车厂一般可以把角度控制在1°以内.一般规定的超差阈值为3°.

超差阈值控制的是安装的极值, 工厂需要以比超差阈值低很多的指标控制安装工艺.

2.3 外参标定误差

是指标定算法输出的外参与实际外参之间的差。

根据已有经验[2023],当前hobot 基于标靶方案和在线方案的标定精度在<0.3°量级,具体精度取决于传感器以及标定方式, 标定依赖环境.

2.4算法容忍的外参误差

由于视觉感知算法,是基于采集车数据标注及训练的.虽然会有一定的加偏策略实现数据增强, 但训练出来的算法对相机安装角度变化的泛化能力有限,故实际量产车的相机外参与训练时的外参不能有太大的差别.

2.5 标定算法矫正能力

标定算法能够容忍的外参实际值与外参设计值[标定的初始值]之间的误差是有限的, 标定算法只能在容忍的误差范围内完成标定, 这个容忍度需要略大于系统设计的外参工装误差.

相关推荐
AndrewHZ13 分钟前
【遥感图像入门】遥感图像专用去噪算法:核心方案与实战(PyTorch代码)
pytorch·算法·计算机视觉·cv·遥感图像·高分辨率·去噪算法
前端小L1 小时前
回溯算法专题(八):精细化切割——还原合法的「IP 地址」
数据结构·算法
Hcoco_me7 小时前
大模型面试题17:PCA算法详解及入门实操
算法
跨境卫士苏苏7 小时前
亚马逊AI广告革命:告别“猜心”,迎接“共创”时代
大数据·人工智能·算法·亚马逊·防关联
云雾J视界8 小时前
当算法试图解决一切:技术解决方案主义的诱惑与陷阱
算法·google·bert·transformer·attention·算法治理
Xの哲學8 小时前
Linux Miscdevice深度剖析:从原理到实战的完整指南
linux·服务器·算法·架构·边缘计算
夏乌_Wx9 小时前
练题100天——DAY23:存在重复元素Ⅰ Ⅱ+两数之和
数据结构·算法·leetcode
立志成为大牛的小牛9 小时前
数据结构——五十六、排序的基本概念(王道408)
开发语言·数据结构·程序人生·算法
沿着路走到底10 小时前
将数组倒序,不能采用reverse,算法复杂度最低
算法