OpenCV特征检测(8)检测图像中圆形的函数HoughCircles()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

在灰度图像中使用霍夫变换查找圆形。

该函数使用霍夫变换的一种修改版本在灰度图像中查找圆形。

例子:

cpp 复制代码
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <math.h>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
{
    Mat img, gray;
    if( argc != 2 || !(img=imread(argv[1], IMREAD_COLOR)).data)
        return -1;
    cvtColor(img, gray, COLOR_BGR2GRAY);
    // smooth it, otherwise a lot of false circles may be detected
    GaussianBlur( gray, gray, Size(9, 9), 2, 2 );
    vector<Vec3f> circles;
    HoughCircles(gray, circles, HOUGH_GRADIENT,
                 2, gray.rows/4, 200, 100 );
    for( size_t i = 0; i < circles.size(); i++ )
    {
         Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
         int radius = cvRound(circles[i][2]);
         // draw the circle center
         circle( img, center, 3, Scalar(0,255,0), -1, 8, 0 );
         // draw the circle outline
         circle( img, center, radius, Scalar(0,0,255), 3, 8, 0 );
    }
    namedWindow( "circles", 1 );
    imshow( "circles", img );
    waitKey(0);
    return 0;
}

注意:

通常该函数能够很好地检测圆形的中心。然而,它可能无法正确找到半径。如果你知道半径范围,可以通过指定 minRadius 和 maxRadius 来帮助函数。或者,在使用 HOUGH_GRADIENT 方法的情况下,你可以将 maxRadius 设置为一个负数,以仅返回中心而不进行半径搜索,并使用额外的过程来找到正确的半径。

对图像进行轻微的平滑处理也有帮助,除非图像本身已经很平滑。例如,使用大小为 7x7 的高斯核和 1.5x1.5 的 sigma 进行 GaussianBlur() 或类似的模糊处理可能会有帮助。

HoughCircles 是 OpenCV 中用于检测图像中圆形的一个函数。Hough 变换是一种用于检测图像中特定形状的技术,尤其是直线和圆形。HoughCircles 实现了 Hough 变换的一个变种,专门用于检测圆形。

函数原型

cpp 复制代码
void cv::HoughCircles
(
	InputArray 	image,
	OutputArray 	circles,
	int 	method,
	double 	dp,
	double 	minDist,
	double 	param1 = 100,
	double 	param2 = 100,
	int 	minRadius = 0,
	int 	maxRadius = 0 
)		

参数

  • 参数image: 8 位单通道灰度输入图像。

  • 参数circles: 输出的检测到的圆形向量。每个向量编码为包含 3 或 4 个元素的浮点数向量(x, y, 半径)或(x, y, 半径, 投票数)。

  • 参数method: 检测方法,参见 HoughModes。可用的方法包括 HOUGH_GRADIENT 和 HOUGH_GRADIENT_ALT。

  • 参数dp: 累加器分辨率与图像分辨率的逆比。例如,如果 dp=1,累加器具有与输入图像相同的分辨率。如果 dp=2,累加器的宽度和高度各为输入图像的一半。对于 HOUGH_GRADIENT_ALT,推荐的值是 dp=1.5,除非需要检测一些非常小的圆形。

  • 参数minDist: 检测到的圆形中心之间的最小距离。如果该参数太小,可能会错误地检测到多个相邻的圆形。如果太大,某些圆形可能会被遗漏。

  • 参数param1: 第一个特定于方法的参数。在 HOUGH_GRADIENT 和 HOUGH_GRADIENT_ALT 的情况下,它是传递给 Canny 边缘检测器的较高阈值(较低的阈值是较高阈值的一半)。注意 HOUGH_GRADIENT_ALT 使用 Scharr 算法来计算图像的导数,所以阈值通常应该更高,例如 300 或者适用于正常曝光和对比度较高的图像。

  • 参数param2: 第二个特定于方法的参数。在 HOUGH_GRADIENT 的情况下,它是检测阶段的累加器阈值,用于圆心。该值越小,可能检测到的虚假圆形越多。对应的累加器值较大的圆形将优先返回。在 HOUGH_GRADIENT_ALT 算法中,这是圆形的"完美度"度量。该值越接近 1,算法选择的圆形形状越好。大多数情况下 0.9 应该是合适的。如果你想更好地检测小圆形,可以将其减小到 0.85、0.8 或甚至更小。但同时也要尝试限制搜索范围 [minRadius, maxRadius] 以避免出现许多虚假圆形。

  • 参数minRadius: 最小圆形半径。

  • 参数maxRadius: 最大圆形半径。如果 <= 0,使用最大图像尺寸。如果 < 0,HOUGH_GRADIENT 返回中心而不查找半径。HOUGH_GRADIENT_ALT 总是计算圆形的半径。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main( int argc, char** argv )
{
    // 加载图像

    cv::Mat img = cv::imread("/media/dingxin/data/study/OpenCV/sources/images/qiu.jpg", cv::IMREAD_COLOR );

    if ( !img.data )
    {
        std::cout << "No image data" << std::endl;
        return -1;
    }

    cv::imshow( "Original Image", img );

    // 转换为灰度图
    cv::Mat gray;
    cvtColor( img, gray, cv::COLOR_BGR2GRAY );

    // 高斯模糊减少噪声
    cv::GaussianBlur( gray, gray, cv::Size( 9, 9 ), 2, 2 );

    std::vector< cv::Vec3f > circles;  // 存储检测到的圆形信息

    // 设置参数
    double dp      = 1;             // 累加器分辨率
    double minDist = img.rows / 8;  // 圆心之间的最小距离
    double param1  = 100;           // 边缘检测的高阈值
    double param2  = 30;            // 累加器阈值
    int minRadius  = 0;             // 最小半径
    int maxRadius  = 0;             // 最大半径

    // 使用 HoughCircles 检测圆形
    cv::HoughCircles( gray, circles, cv::HOUGH_GRADIENT, dp, minDist, param1, param2, minRadius, maxRadius );

    // 绘制检测到的圆形
    for ( size_t i = 0; i < circles.size(); i++ )
    {
        cv::Vec3i c = circles[ i ];
        cv::Point center( cvRound( c[ 0 ] ), cvRound( c[ 1 ] ) );
        int radius = cvRound( c[ 2 ] );

        // 绘制圆心
        cv::circle( img, center, 1, cv::Scalar( 0, 100, 100 ), 3, cv::LINE_AA );

        // 绘制圆周
        cv::circle( img, center, radius, cv::Scalar( 255, 0, 0 ), 3, cv::LINE_AA );
    }

    // 显示带有检测出圆形的图像
    
    cv::imshow( "Detected Circles", img );

    // 等待按键后关闭窗口
    cv::waitKey( 0 );

    return 0;
}

运行结果

相关推荐
果冻人工智能6 分钟前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工7 分钟前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
石小石Orz9 分钟前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
孤独且没人爱的纸鹤18 分钟前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭21 分钟前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~22 分钟前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码29 分钟前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng113329 分钟前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
Seeklike30 分钟前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习
庞传奇30 分钟前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow