cnn机器学习时python版本不兼容报错

在使用python执行CNN算法时,发生如下报错:

复制代码
A module that was compiled using NumPy 1.x cannot be run in NumPy 2.1.1 as it may crash. 
To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. 

If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. 
We expect that some modules will need time to support NumPy 2.

这时候需要安装指定版本。

复制代码
pip install numpy==1.26.4

安装完成后重新运行代码。

复制代码
import tensorflow as tf
from keras import datasets, layers, models
import matplotlib.pyplot as plt

# 加载 MNIST 数据集
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()
train_images, test_images = train_images / 255.0, test_images / 255.0
train_images = train_images.reshape((train_images.shape[0], 28, 28, 1))
test_images = test_images.reshape((test_images.shape[0], 28, 28, 1))

# 构建 CNN 模型
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))

# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print(f'\nTest accuracy: {test_acc:.4f}')

# 绘制训练过程中的准确率
plt.figure(figsize=(12, 4))

plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.title('Accuracy Over Time')
plt.show()

成功运行得出结果。

相关推荐
音视频牛哥10 分钟前
从「行走」到「思考」:机器人进化之路与感知—决策链路的工程化实践
机器学习·机器人·音视频开发
阿里云大数据AI技术24 分钟前
【跨国数仓迁移最佳实践6】MaxCompute SQL语法及函数功能增强,10万条SQL转写顺利迁移
python·sql
杜子不疼.42 分钟前
《Python学习之文件操作:从入门到精通》
数据库·python·学习
微小的xx1 小时前
java + html 图片点击文字验证码
java·python·html
金色旭光1 小时前
uv 现代化的虚拟环境管理工具
python·python进阶
赞哥哥s1 小时前
Python脚本开发-统计Rte中未连接的Port
python·autosar·rte
Franklin1 小时前
Python界面设计【QT-creator基础编程 - 01】如何让不同分辨率图像自动匹配graphicsView的窗口大小
开发语言·python·qt
waynaqua1 小时前
FastAPI开发AI应用三:添加深度思考功能
python·openai·deepseek
onejason1 小时前
《利用 Python 爬虫获取 Amazon 商品详情实战指南》
前端·后端·python
苏婳6662 小时前
【最新版】怎么下载mysqlclient并成功安装?
数据库·python·mysql