cnn机器学习时python版本不兼容报错

在使用python执行CNN算法时,发生如下报错:

复制代码
A module that was compiled using NumPy 1.x cannot be run in NumPy 2.1.1 as it may crash. 
To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. 

If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. 
We expect that some modules will need time to support NumPy 2.

这时候需要安装指定版本。

复制代码
pip install numpy==1.26.4

安装完成后重新运行代码。

复制代码
import tensorflow as tf
from keras import datasets, layers, models
import matplotlib.pyplot as plt

# 加载 MNIST 数据集
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()
train_images, test_images = train_images / 255.0, test_images / 255.0
train_images = train_images.reshape((train_images.shape[0], 28, 28, 1))
test_images = test_images.reshape((test_images.shape[0], 28, 28, 1))

# 构建 CNN 模型
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test_images, test_labels))

# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print(f'\nTest accuracy: {test_acc:.4f}')

# 绘制训练过程中的准确率
plt.figure(figsize=(12, 4))

plt.subplot(1, 2, 1)
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.title('Accuracy Over Time')
plt.show()

成功运行得出结果。

相关推荐
思则变1 小时前
[Pytest] [Part 2]增加 log功能
开发语言·python·pytest
漫谈网络2 小时前
WebSocket 在前后端的完整使用流程
javascript·python·websocket
学技术的大胜嗷2 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
还有糕手2 小时前
西南交通大学【机器学习实验10】
人工智能·机器学习
try2find3 小时前
安装llama-cpp-python踩坑记
开发语言·python·llama
博观而约取4 小时前
Django ORM 1. 创建模型(Model)
数据库·python·django
精灵vector5 小时前
构建专家级SQL Agent交互
python·aigc·ai编程
想知道哇6 小时前
机器学习入门:决策树的欠拟合与过拟合
人工智能·机器学习
Zonda要好好学习6 小时前
Python入门Day2
开发语言·python
Vertira6 小时前
pdf 合并 python实现(已解决)
前端·python·pdf