flink interval join为什么配置的是前后2分钟 ,但是每次都是左流到了4分钟,匹配不上才下发,和预期的不一样

客户反馈现象:

L.time between r.time - interval '1' minute and r.time + intervel '1' minute 实际上是2分钟匹配不上才下发

L.time between r.time - interval '1' minute and r.time 实际上是1分钟30秒匹配不上才下发

L.time between r.time and r.time + intervel'1' minute 实际上是立刻下发

L.time between r.time - interval '2' minute and r.time + intervel '2' minute 实际上是4分钟匹配不上才下发

排查后的结论:配置的上下界是[a,b],那结果为 1.5a + 0.5b 时间之后匹配不上才下发

复制代码
源码分析:由三个属性进行控制 分别是 左流时间,右流时间、 根据左右流时间得到的minCleanUpInterval,为0.5a+0.5b
this.leftRelativeSize = -leftLowerBound;   // 左流的时间 即a
this.rightRelativeSize = leftUpperBound;  // 右流的时间  即b
this.minCleanUpInterval =(this.leftRelativeSize + this.rightRelativeSize) / 2L;   // 最小的区间 为0.5a + 0.5b
this.allowedLateness  = 0;  // 默认为0
if (leftRow) {
    // 若是左流,则为 rowTime + a + this.minCleanUpInterval + 0 + 1L , 即为 1.5a + 0.5b + 1L
    cleanUpTime = rowTime + this.leftRelativeSize + this.minCleanUpInterval + this.allowedLateness + 1L;
    this.registerTimer(ctx, cleanUpTime);
    this.rightTimerState.update(cleanUpTime);
} else {
    // 若是右流,则为 rowTime + b + this.minCleanUpInterval + 0 + 1L , 即为 1.5b+ 0.5a + 1L
    cleanUpTime = rowTime + this.rightRelativeSize + this.minCleanUpInterval + this.allowedLateness + 1L;
    this.registerTimer(ctx, cleanUpTime);
    this.leftTimerState.update(cleanUpTime);
}

源码定位过程:

看到这个问题,立马能想到需要通过源码查找原因,flink join本质是对窗口的操作,窗口在flink底层是基于Timer定时器来实现的,只需在ctx.timerService().registerProcessingTimeTimer()方法处打断点进行debug,即可知道是从哪里进行注册,从而定位到上述的源码类:org.apache.flink.table.runtime.operators.join.interval.TimeIntervalJoin。

就这样,不到5分钟排查出了问题得到原因。

相关推荐
RunningShare1 小时前
从“国庆景区人山人海”看大数据处理中的“数据倾斜”难题
大数据·flink
Hello.Reader2 小时前
Flink 执行模式在 STREAMING 与 BATCH 之间做出正确选择
大数据·flink·batch
文火冰糖的硅基工坊4 小时前
《投资-99》价值投资者的认知升级与交易规则重构 - 什么是周期性股票?有哪些周期性股票?不同周期性股票的周期多少?周期性股票的买入和卖出的特点?
大数据·人工智能·重构·架构·投资·投机
Elastic 中国社区官方博客4 小时前
Elasticsearch:使用推理端点及语义搜索演示
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
数据智能老司机6 小时前
数据工程设计模式——冷热数据存储
大数据·设计模式·架构
Hello.Reader8 小时前
Flink 连接器与格式thin/uber 制品、打包策略与上线清单
大数据·flink
隐语SecretFlow8 小时前
【隐私计算科普】如何实现可证明安全?
大数据·开源·边缘计算
lisw059 小时前
AIoT(人工智能物联网):融合范式下的技术演进、系统架构与产业变革
大数据·人工智能·物联网·机器学习·软件工程
mtouch33310 小时前
GIS+VR地理信息虚拟现实XR MR AR
大数据·人工智能·ar·无人机·xr·vr·mr
数据智能老司机10 小时前
数据工程设计模式——实时摄取与处理
大数据·设计模式·架构