flink interval join为什么配置的是前后2分钟 ,但是每次都是左流到了4分钟,匹配不上才下发,和预期的不一样

客户反馈现象:

L.time between r.time - interval '1' minute and r.time + intervel '1' minute 实际上是2分钟匹配不上才下发

L.time between r.time - interval '1' minute and r.time 实际上是1分钟30秒匹配不上才下发

L.time between r.time and r.time + intervel'1' minute 实际上是立刻下发

L.time between r.time - interval '2' minute and r.time + intervel '2' minute 实际上是4分钟匹配不上才下发

排查后的结论:配置的上下界是[a,b],那结果为 1.5a + 0.5b 时间之后匹配不上才下发

复制代码
源码分析:由三个属性进行控制 分别是 左流时间,右流时间、 根据左右流时间得到的minCleanUpInterval,为0.5a+0.5b
this.leftRelativeSize = -leftLowerBound;   // 左流的时间 即a
this.rightRelativeSize = leftUpperBound;  // 右流的时间  即b
this.minCleanUpInterval =(this.leftRelativeSize + this.rightRelativeSize) / 2L;   // 最小的区间 为0.5a + 0.5b
this.allowedLateness  = 0;  // 默认为0
if (leftRow) {
    // 若是左流,则为 rowTime + a + this.minCleanUpInterval + 0 + 1L , 即为 1.5a + 0.5b + 1L
    cleanUpTime = rowTime + this.leftRelativeSize + this.minCleanUpInterval + this.allowedLateness + 1L;
    this.registerTimer(ctx, cleanUpTime);
    this.rightTimerState.update(cleanUpTime);
} else {
    // 若是右流,则为 rowTime + b + this.minCleanUpInterval + 0 + 1L , 即为 1.5b+ 0.5a + 1L
    cleanUpTime = rowTime + this.rightRelativeSize + this.minCleanUpInterval + this.allowedLateness + 1L;
    this.registerTimer(ctx, cleanUpTime);
    this.leftTimerState.update(cleanUpTime);
}

源码定位过程:

看到这个问题,立马能想到需要通过源码查找原因,flink join本质是对窗口的操作,窗口在flink底层是基于Timer定时器来实现的,只需在ctx.timerService().registerProcessingTimeTimer()方法处打断点进行debug,即可知道是从哪里进行注册,从而定位到上述的源码类:org.apache.flink.table.runtime.operators.join.interval.TimeIntervalJoin。

就这样,不到5分钟排查出了问题得到原因。

相关推荐
橙色云-智橙协同研发2 分钟前
【PLM实施专家宝典】离散制造企业ECO管理优化方案:构建自动化、零错误的变更引擎
大数据·云原生·解决方案·数字化转型·plm·eco·云plm
星光一影20 分钟前
基于SpringBoot智慧社区系统/乡村振兴系统/大数据与人工智能平台
大数据·spring boot·后端·mysql·elasticsearch·vue
e6zzseo3 小时前
独立站的优势和劣势和运营技巧
大数据·人工智能
wudl55667 小时前
flink 1.20 物化表(Materialized Tables)
大数据·flink·linq
InfiSight智睿视界8 小时前
AI 技术助力汽车美容行业实现精细化运营管理
大数据·人工智能
8K超高清10 小时前
高校巡展:中国传媒大学+河北传媒学院
大数据·运维·网络·人工智能·传媒
amhjdx10 小时前
政策东风下:卓玛儿童级健康腻子引领行业升级
大数据
TDengine (老段)11 小时前
TDengine 字符串函数 CONCAT_WS 用户手册
android·大数据·数据库·时序数据库·tdengine·涛思数据
TTGGGFF11 小时前
人工智能:大语言模型或为死胡同?拆解AI发展的底层逻辑、争议与未来方向
大数据·人工智能·语言模型
杂家13 小时前
Hadoop完全分布式部署(超详细)
大数据·hadoop·分布式