flink interval join为什么配置的是前后2分钟 ,但是每次都是左流到了4分钟,匹配不上才下发,和预期的不一样

客户反馈现象:

L.time between r.time - interval '1' minute and r.time + intervel '1' minute 实际上是2分钟匹配不上才下发

L.time between r.time - interval '1' minute and r.time 实际上是1分钟30秒匹配不上才下发

L.time between r.time and r.time + intervel'1' minute 实际上是立刻下发

L.time between r.time - interval '2' minute and r.time + intervel '2' minute 实际上是4分钟匹配不上才下发

排查后的结论:配置的上下界是[a,b],那结果为 1.5a + 0.5b 时间之后匹配不上才下发

复制代码
源码分析:由三个属性进行控制 分别是 左流时间,右流时间、 根据左右流时间得到的minCleanUpInterval,为0.5a+0.5b
this.leftRelativeSize = -leftLowerBound;   // 左流的时间 即a
this.rightRelativeSize = leftUpperBound;  // 右流的时间  即b
this.minCleanUpInterval =(this.leftRelativeSize + this.rightRelativeSize) / 2L;   // 最小的区间 为0.5a + 0.5b
this.allowedLateness  = 0;  // 默认为0
if (leftRow) {
    // 若是左流,则为 rowTime + a + this.minCleanUpInterval + 0 + 1L , 即为 1.5a + 0.5b + 1L
    cleanUpTime = rowTime + this.leftRelativeSize + this.minCleanUpInterval + this.allowedLateness + 1L;
    this.registerTimer(ctx, cleanUpTime);
    this.rightTimerState.update(cleanUpTime);
} else {
    // 若是右流,则为 rowTime + b + this.minCleanUpInterval + 0 + 1L , 即为 1.5b+ 0.5a + 1L
    cleanUpTime = rowTime + this.rightRelativeSize + this.minCleanUpInterval + this.allowedLateness + 1L;
    this.registerTimer(ctx, cleanUpTime);
    this.leftTimerState.update(cleanUpTime);
}

源码定位过程:

看到这个问题,立马能想到需要通过源码查找原因,flink join本质是对窗口的操作,窗口在flink底层是基于Timer定时器来实现的,只需在ctx.timerService().registerProcessingTimeTimer()方法处打断点进行debug,即可知道是从哪里进行注册,从而定位到上述的源码类:org.apache.flink.table.runtime.operators.join.interval.TimeIntervalJoin。

就这样,不到5分钟排查出了问题得到原因。

相关推荐
IT_102434 分钟前
Spring Boot项目开发实战销售管理系统——系统设计!
大数据·spring boot·后端
一只鹿鹿鹿2 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
聚铭网络3 小时前
案例精选 | 某省级税务局AI大数据日志审计中台应用实践
大数据·人工智能·web安全
Qdgr_5 小时前
价值实证:数字化转型标杆案例深度解析
大数据·数据库·人工智能
选择不变5 小时前
日线周线MACD指标使用图文教程,通达信指标
大数据·区块链·通达信指标公式·炒股技巧·短线指标·炒股指标
高山莫衣5 小时前
git rebase多次触发冲突
大数据·git·elasticsearch
链上Sniper5 小时前
智能合约状态快照技术:实现 EVM 状态的快速同步与回滚
java·大数据·linux·运维·web3·区块链·智能合约
wx_ywyy67986 小时前
推客系统小程序终极指南:从0到1构建自动裂变增长引擎,实现业绩10倍增长!
大数据·人工智能·短剧·短剧系统·推客系统·推客小程序·推客系统开发
蚂蚁数据AntData6 小时前
从性能优化赛到社区Committer,走进赵宇捷在Apache Fory的成长之路
大数据·开源·apache·数据库架构
谷新龙0018 小时前
大数据环境搭建指南:基于 Docker 构建 Hadoop、Hive、HBase 等服务
大数据·hadoop·docker