中秋献礼!2024年中科院一区极光优化算法+分解对比!VMD-PLO-Transformer-LSTM多变量时间序列光伏功率预测

中秋献礼!2024年中科院一区极光优化算法+分解对比!VMD-PLO-Transformer-LSTM多变量时间序列光伏功率预测

目录

效果一览







基本介绍

1.中秋献礼!2024年中科院一区极光优化算法+分解组合对比!VMD-PLO-Transformer-LSTM多变量时间序列光伏功率预测,变分模态分解+极光优化算法优化Transformer结合长短期记忆神经网络多变量时间序列预测(程序可以作为核心级论文代码支撑,目前尚未发表);极光优化算法 Polar Lights Optimization (PLO)的元启发式算法,该成果于2024年8月最新发表在国际顶级JCR 1区、中科院 Top SCI期刊 Neurocomputing。

2.麻雀搜索算法优化参数为:学习率,隐含层单元数目,最大训练周期,运行环境为Matlab2023b及以上;

3.数据集为excel(光伏功率数据集,输入辐射度、气温、气压、湿度,输出光伏功率),输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,主程序运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。

先运行main1VMD,进行vmd分解;再运行main2PLOTransformerLSTM,三个模型对比;注意:一种算法不是万能的,不同的数据集效果会有差别,后面的工作就是需要调整参数。

数据集

参考文献

程序设计

  • 完整程序和数据获取方式私信博主回复VMD-PLO-Transformer-LSTM多变量时间序列光伏功率预测(Matlab)
clike 复制代码
X = xlsread('北半球光伏数据.xlsx','C2:E296');

save origin_data X

L=length(X);%采样点数,即有多少个数据
t=(0:L-1)*Ts;%时间序列
STA=0; %采样起始位置,这里第0h开始采样

%--------- some sample parameters forVMD:对于VMD样品参数进行设置---------------
alpha = 2500;       % moderate bandwidth constraint:适度的带宽约束/惩罚因子
tau = 0;          % noise-tolerance (no strict fidelity enforcement):噪声容限(没有严格的保真度执行)
K = 5;              % modes:分解的模态数
DC = 0;             % no DC part imposed:无直流部分
init = 1;           % initialize omegas uniformly  :omegas的均匀初始化
tol = 1e-7         
%--------------- Run actual VMD code:数据进行vmd分解---------------------------
[u, u_hat, omega] = VMD(X(:,end), alpha, tau, K, DC, init, tol);



%  重构数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end


% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217

[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

相关推荐
deephub7 小时前
Tokenformer:基于参数标记化的高效可扩展Transformer架构
人工智能·python·深度学习·架构·transformer
qzhqbb8 小时前
基于 Transformer 的语言模型
人工智能·语言模型·自然语言处理·transformer
___Dream8 小时前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
985小水博一枚呀11 小时前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
985小水博一枚呀11 小时前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
小言从不摸鱼1 天前
【NLP自然语言处理】深入解析Encoder与Decoder模块:结构、作用与深度学习应用
人工智能·深度学习·神经网络·机器学习·自然语言处理·transformer·1024程序员节
YRr YRr1 天前
深度学习:Transformer 详解
人工智能·深度学习·transformer
Zilliz Planet1 天前
大语言模型鼻祖Transformer的模型架构和底层原理
人工智能·深度学习·语言模型·自然语言处理·transformer
lzt23231 天前
深度学习中的 Dropout:原理、公式与实现解析
人工智能·python·深度学习·神经网络·transformer
shuyeah1 天前
LSTM结构原理
人工智能·rnn·lstm