《深度学习》—— 神经网络中常用的激活函数

文章目录

  • [1. Sigmoid 激活函数](#1. Sigmoid 激活函数)
  • [2. Softmax 激活函数](#2. Softmax 激活函数)
  • [3. ReLU 激活函数](#3. ReLU 激活函数)
  • [4. Leaky ReLU 激活函数](#4. Leaky ReLU 激活函数)
  • [5. ELU 激活函数](#5. ELU 激活函数)
  • [6. Tanh 激活函数](#6. Tanh 激活函数)

激活函数(Activation Function)是在人工神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端 。它在神经网络中扮演着至关重要的角色,主要作用是对所有的隐藏层和输出层添加一个非线性的操作,使得神经网络的输出更为复杂、表达能力更强。

1. Sigmoid 激活函数

  • 函数定义:Sigmoid函数是一种S型函数,也称为S型生长曲线或Logistic函数。其数学表达式为:
  • 特点:
    • 能够将输入的连续实值变换为0和1之间的输出,适合用作二分类的输出层
    • 函数平滑且易于求导
  • 缺点:
    • 激活函数计算量大,反向传播求误差梯度时涉及除法运算
    • 反向传播时容易出现梯度消失的情况,影响深层网络的训练
  • 函数图像:

2. Softmax 激活函数

  • 函数定义:Softmax函数通常用于多分类问题的输出层,其数学表达式为:
  • 特点:
    • 将输出转化为概率分布,所有输出值之和为1
    • 非常适合多分类问题
  • 函数图像:

3. ReLU 激活函数

  • 函数定义:ReLU函数是线性整流函数,其数学表达式为:
  • 特点:
    • 解决了梯度消失问题
    • 计算速度非常快,收敛速度远快于Sigmoid和Tanh
  • 缺点:
    • 输出的不是以0为中心
    • 某些神经元可能永远不会被激活(Dead ReLU)
  • 函数图像:

4. Leaky ReLU 激活函数

  • 函数定义:Leaky ReLU函数是ReLU函数的改进版,其数学表达式为:
    • α 是一个很小的常数
  • 特点:
    • 继承了ReLU函数的优点
    • 解决了Dead ReLU问题
  • 函数图像:

5. ELU 激活函数

  • 函数定义:ELU函数是另一种ReLU函数的改进版,其数学表达式为:
  • 特点:
    • 解决了ReLU的Dead ReLU问题
    • 在所有点上都是连续且可微的
    • 相比ReLU及其变体,在某些情况下能提高训练速度和准确度
  • 函数图象:

6. Tanh 激活函数

  • 函数定义:Tanh函数是双曲正切函数,其数学表达式为:
  • 特点:
    • 解决了Sigmoid函数不以0为中心输出的问题
    • 函数输出范围在-1到1之间,更接近数据真实分布
  • 缺点:
    • 仍然存在梯度消失的问题
    • 涉及幂运算,计算相对复杂
  • 函数图像:
相关推荐
qq_12498707535 小时前
基于JavaWeb的大学生房屋租赁系统(源码+论文+部署+安装)
java·数据库·人工智能·spring boot·计算机视觉·毕业设计·计算机毕业设计
杜子不疼.5 小时前
CANN算子基础框架库opbase的算子开发与扩展机制深度解析
人工智能
程序猿追5 小时前
CANN ops-math仓库解读 数学算子的底层支撑与高性能实现
人工智能·架构
结局无敌5 小时前
统一算子语言:cann/ops-nn 如何为异构AI世界建立通用“方言”
人工智能·cann
杜子不疼.5 小时前
CANN计算机视觉算子库ops-cv的图像处理与特征提取优化实践
图像处理·人工智能·计算机视觉
大闲在人5 小时前
软件仍将存在,但软件公司会以全新形式出现——从Claude智能体引发万亿市值震荡看行业重构
人工智能
艾莉丝努力练剑5 小时前
【Linux:文件】Ext系列文件系统(初阶)
大数据·linux·运维·服务器·c++·人工智能·算法
芷栀夏5 小时前
从 CANN 开源项目看现代爬虫架构的演进:轻量、智能与统一
人工智能·爬虫·架构·开源·cann
梦帮科技6 小时前
OpenClaw 桥接调用 Windows MCP:打造你的 AI 桌面自动化助手
人工智能·windows·自动化
User_芊芊君子6 小时前
【分布式训练】CANN SHMEM跨设备内存通信库:构建高效多机多卡训练的关键组件
分布式·深度学习·神经网络·wpf