《深度学习》—— 神经网络中常用的激活函数

文章目录

  • [1. Sigmoid 激活函数](#1. Sigmoid 激活函数)
  • [2. Softmax 激活函数](#2. Softmax 激活函数)
  • [3. ReLU 激活函数](#3. ReLU 激活函数)
  • [4. Leaky ReLU 激活函数](#4. Leaky ReLU 激活函数)
  • [5. ELU 激活函数](#5. ELU 激活函数)
  • [6. Tanh 激活函数](#6. Tanh 激活函数)

激活函数(Activation Function)是在人工神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端 。它在神经网络中扮演着至关重要的角色,主要作用是对所有的隐藏层和输出层添加一个非线性的操作,使得神经网络的输出更为复杂、表达能力更强。

1. Sigmoid 激活函数

  • 函数定义:Sigmoid函数是一种S型函数,也称为S型生长曲线或Logistic函数。其数学表达式为:
  • 特点:
    • 能够将输入的连续实值变换为0和1之间的输出,适合用作二分类的输出层
    • 函数平滑且易于求导
  • 缺点:
    • 激活函数计算量大,反向传播求误差梯度时涉及除法运算
    • 反向传播时容易出现梯度消失的情况,影响深层网络的训练
  • 函数图像:

2. Softmax 激活函数

  • 函数定义:Softmax函数通常用于多分类问题的输出层,其数学表达式为:
  • 特点:
    • 将输出转化为概率分布,所有输出值之和为1
    • 非常适合多分类问题
  • 函数图像:

3. ReLU 激活函数

  • 函数定义:ReLU函数是线性整流函数,其数学表达式为:
  • 特点:
    • 解决了梯度消失问题
    • 计算速度非常快,收敛速度远快于Sigmoid和Tanh
  • 缺点:
    • 输出的不是以0为中心
    • 某些神经元可能永远不会被激活(Dead ReLU)
  • 函数图像:

4. Leaky ReLU 激活函数

  • 函数定义:Leaky ReLU函数是ReLU函数的改进版,其数学表达式为:
    • α 是一个很小的常数
  • 特点:
    • 继承了ReLU函数的优点
    • 解决了Dead ReLU问题
  • 函数图像:

5. ELU 激活函数

  • 函数定义:ELU函数是另一种ReLU函数的改进版,其数学表达式为:
  • 特点:
    • 解决了ReLU的Dead ReLU问题
    • 在所有点上都是连续且可微的
    • 相比ReLU及其变体,在某些情况下能提高训练速度和准确度
  • 函数图象:

6. Tanh 激活函数

  • 函数定义:Tanh函数是双曲正切函数,其数学表达式为:
  • 特点:
    • 解决了Sigmoid函数不以0为中心输出的问题
    • 函数输出范围在-1到1之间,更接近数据真实分布
  • 缺点:
    • 仍然存在梯度消失的问题
    • 涉及幂运算,计算相对复杂
  • 函数图像:
相关推荐
汤姆yu9 分钟前
基于深度学习的水稻病虫害检测系统
人工智能·深度学习
程序员水自流25 分钟前
【AI大模型第9集】Function Calling,让AI大模型连接外部世界
java·人工智能·llm
手揽回忆怎么睡26 分钟前
Streamlit学习实战教程级,一个交互式的机器学习实验平台!
人工智能·学习·机器学习
小徐Chao努力28 分钟前
【Langchain4j-Java AI开发】06-工具与函数调用
java·人工智能·python
db_murphy36 分钟前
时事篇 | Manus收购
人工智能
攻城狮7号40 分钟前
阶跃星辰开源NextStep-1.1图像模型:告别“鬼影”与“马赛克”?
人工智能·ai图像生成·nextstep-1.1·阶跃星辰开源模型·图像模型
_codemonster1 小时前
BERT中的padding操作
人工智能·深度学习·bert
笙枫1 小时前
基于AI Agent框架下的能源优化调度方案和实践 | 架构设计
人工智能·能源
滴啦嘟啦哒1 小时前
【机械臂】【基本驱动】二、在gazebo中实现机械臂运动学逆解及物体夹取
深度学习·ros
杭州泽沃电子科技有限公司1 小时前
面对风霜雨雪雷电:看在线监测如何为架空线路筑牢安全网
运维·人工智能·在线监测·智能监测