《深度学习》—— 神经网络中常用的激活函数

文章目录

  • [1. Sigmoid 激活函数](#1. Sigmoid 激活函数)
  • [2. Softmax 激活函数](#2. Softmax 激活函数)
  • [3. ReLU 激活函数](#3. ReLU 激活函数)
  • [4. Leaky ReLU 激活函数](#4. Leaky ReLU 激活函数)
  • [5. ELU 激活函数](#5. ELU 激活函数)
  • [6. Tanh 激活函数](#6. Tanh 激活函数)

激活函数(Activation Function)是在人工神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端 。它在神经网络中扮演着至关重要的角色,主要作用是对所有的隐藏层和输出层添加一个非线性的操作,使得神经网络的输出更为复杂、表达能力更强。

1. Sigmoid 激活函数

  • 函数定义:Sigmoid函数是一种S型函数,也称为S型生长曲线或Logistic函数。其数学表达式为:
  • 特点:
    • 能够将输入的连续实值变换为0和1之间的输出,适合用作二分类的输出层
    • 函数平滑且易于求导
  • 缺点:
    • 激活函数计算量大,反向传播求误差梯度时涉及除法运算
    • 反向传播时容易出现梯度消失的情况,影响深层网络的训练
  • 函数图像:

2. Softmax 激活函数

  • 函数定义:Softmax函数通常用于多分类问题的输出层,其数学表达式为:
  • 特点:
    • 将输出转化为概率分布,所有输出值之和为1
    • 非常适合多分类问题
  • 函数图像:

3. ReLU 激活函数

  • 函数定义:ReLU函数是线性整流函数,其数学表达式为:
  • 特点:
    • 解决了梯度消失问题
    • 计算速度非常快,收敛速度远快于Sigmoid和Tanh
  • 缺点:
    • 输出的不是以0为中心
    • 某些神经元可能永远不会被激活(Dead ReLU)
  • 函数图像:

4. Leaky ReLU 激活函数

  • 函数定义:Leaky ReLU函数是ReLU函数的改进版,其数学表达式为:
    • α 是一个很小的常数
  • 特点:
    • 继承了ReLU函数的优点
    • 解决了Dead ReLU问题
  • 函数图像:

5. ELU 激活函数

  • 函数定义:ELU函数是另一种ReLU函数的改进版,其数学表达式为:
  • 特点:
    • 解决了ReLU的Dead ReLU问题
    • 在所有点上都是连续且可微的
    • 相比ReLU及其变体,在某些情况下能提高训练速度和准确度
  • 函数图象:

6. Tanh 激活函数

  • 函数定义:Tanh函数是双曲正切函数,其数学表达式为:
  • 特点:
    • 解决了Sigmoid函数不以0为中心输出的问题
    • 函数输出范围在-1到1之间,更接近数据真实分布
  • 缺点:
    • 仍然存在梯度消失的问题
    • 涉及幂运算,计算相对复杂
  • 函数图像:
相关推荐
海域云赵从友9 分钟前
助力DeepSeek私有化部署服务:让企业AI落地更简单、更安全
人工智能·安全
伊一大数据&人工智能学习日志23 分钟前
自然语言处理NLP 04案例——苏宁易购优质评论与差评分析
人工智能·python·机器学习·自然语言处理·数据挖掘
刀客12328 分钟前
python3+TensorFlow 2.x(六)自编码器
人工智能·python·tensorflow
大模型之路44 分钟前
Grok-3:人工智能领域的新突破
人工智能·llm·grok-3
闻道且行之1 小时前
LLaMA-Factory|微调大语言模型初探索(4),64G显存微调13b模型
人工智能·语言模型·llama·qlora·fsdp
造夢先森1 小时前
Transformer & LLaMA
深度学习·transformer·llama
喝不完一杯咖啡1 小时前
【AI时代】可视化训练模型工具LLaMA-Factory安装与使用
人工智能·llm·sft·llama·llama-factory
huaqianzkh2 小时前
理解构件的3种分类方法
人工智能·分类·数据挖掘
后端码匠2 小时前
Spring Boot3+Vue2极速整合:10分钟搭建DeepSeek AI对话系统
人工智能·spring boot·后端
用户231434978142 小时前
使用 Trae AI 编程平台生成扫雷游戏
人工智能·设计