R包:ggheatmap热图

加载R包

r 复制代码
# devtools::install_github("XiaoLuo-boy/ggheatmap")

library(ggheatmap)
library(tidyr)

数据

r 复制代码
set.seed(123)
df <- matrix(runif(225,0,10),ncol = 15)
colnames(df) <- paste("sample",1:15,sep = "")
rownames(df) <- sapply(1:15, function(x)paste(sample(LETTERS,3,replace = F),collapse = ""))
df[1:4,1:4]


row_metaData <- data.frame(exprtype=sample(c("Up","Down"),15,replace = T),
                           genetype=sample(c("Metabolism","Immune","None"),15,replace = T))
rownames(row_metaData) <- rownames(df)
col_metaData <- data.frame(tissue=sample(c("Normal","Tumor"),15,replace = T),
                           risklevel=sample(c("High","Low"),15,replace = T))
rownames(col_metaData) <- colnames(df)
exprcol <- c("#EE0000FF","#008B45FF" )
names(exprcol) <- c("Up","Down")
genecol <- c("#EE7E30","#5D9AD3","#D0DFE6FF")
names(genecol) <- c("Metabolism","Immune","None")
tissuecol <- c("#98D352","#FF7F0E")
names(tissuecol) <- c("Normal","Tumor")
riskcol <- c("#EEA236FF","#46B8DAFF")
names(riskcol) <- c("High","Low")
col <- list(exprtype=exprcol,genetype=genecol,tissue=tissuecol,risklevel=riskcol)
text_rows <- sample(rownames(df),3)

图1

r 复制代码
p<- ggheatmap(df,cluster_rows = T,cluster_cols = T,scale = "row",
              text_show_rows = text_rows,
              cluster_num = c(3,3),
              tree_color_rows = c("#008B45FF","#631879FF","#008280FF"),
              tree_color_cols = c("#1F77B4FF","#FF7F0EFF","#2CA02CFF"),
              annotation_rows = row_metaData,
              annotation_cols = col_metaData,
              annotation_color = col
)
p

图2

r 复制代码
p%>%
  ggheatmap_theme(1:5,
                  theme =list(
                    theme(axis.text.x = element_text(angle = 90,face = "bold",size = 10),
                          axis.text.y = element_text(colour = "red",face = "bold")),
                    theme(legend.title = element_text(face = "bold")),
                    theme(legend.title = element_text(face = "bold")),
                    theme(legend.title = element_text(face = "bold")),
                    theme(legend.title = element_text(face = "bold"))
                    ))

图3

r 复制代码
ggheatmap(df,cluster_rows = T,cluster_cols = T,scale = "row",
              text_show_rows = text_rows,
              border = "grey",
              cluster_num = c(3,3),
              tree_color_rows = c("#008B45FF","#631879FF","#008280FF"),
              tree_color_cols = c("#1F77B4FF","#FF7F0EFF","#2CA02CFF"),
              annotation_rows = row_metaData,
              annotation_cols = col_metaData,
              annotation_color = col
)%>%
  ggheatmap_theme(1,theme =list(theme(axis.text.x = element_text(angle = 90,face = "bold",size = 10),
                          axis.text.y = element_text(colour = "red",face = "bold"))))

图4

r 复制代码
ggheatmap(df,cluster_rows = T,cluster_cols = T,scale = "row",
          text_show_rows = text_rows,
          border = "grey",
          shape = "circle",
          cluster_num = c(3,3),
          tree_color_rows = c("#008B45FF","#631879FF","#008280FF"),
          tree_color_cols = c("#1F77B4FF","#FF7F0EFF","#2CA02CFF"),
          annotation_rows = row_metaData,
          annotation_cols = col_metaData,
          annotation_color = col
)%>%
  ggheatmap_theme(1,theme =list(theme(axis.text.x = element_text(angle = 90,face = "bold",size = 10),
                                      axis.text.y = element_text(colour = "red",face = "bold"))))

图5

r 复制代码
ggheatmap(df,cluster_rows = T,cluster_cols = T,scale = "row",
          text_show_rows = text_rows,
          border = "grey",
          cluster_num = c(3,3),
          tree_color_rows = c("#008B45FF","#631879FF","#008280FF"),
          tree_color_cols = c("#1F77B4FF","#FF7F0EFF","#2CA02CFF"),
          annotation_rows = row_metaData,
          annotation_cols = col_metaData,
          annotation_color = col,
          text_position_rows = "left",
          text_position_cols = "top",
          tree_position_rows = "right",
          tree_position_cols = "bottom",
          annotation_position_rows = "right",
          annotation_position_cols = "bottom"
          
)%>%
  ggheatmap_theme(1,theme =list(theme(axis.text.x = element_text(angle = 90,face = "bold",size = 10),
                                      axis.text.y = element_text(colour = "red",face = "bold"))))

参考

相关推荐
阿达_优阅达1 天前
Tableau 2025.3 发布!可视化扩展升级、Server 版 Agent、平台数据 API,让 AI 深度融入业务工作流
人工智能·ai·数据分析·数据可视化·仪表板·tableau·版本更新
希艾席帝恩1 天前
数字孪生如何重塑现代制造体系?
大数据·人工智能·数字孪生·数据可视化·数字化转型
Pyeako2 天前
Python数据可视化--matplotlib库
python·matplotlib·数据可视化·画图·pylab
青春不败 177-3266-05202 天前
HMSC联合物种分布模型在群落生态学中的贝叶斯统计分析应用
随机森林·r语言·生态学·生物多样性·生态环境·生物群落·物种分布
高-老师2 天前
基于R语言BIOMOD2 及机器学习方法的物种分布模拟与案例分析
机器学习·r语言·biomod2
数据科学项目实践2 天前
建模步骤 3 :数据探索(EDA) — 1、初步了解数据:常用函数
人工智能·python·机器学习·数据挖掘·数据分析·pandas·数据可视化
AI小云3 天前
【数据操作与可视化】Serborn绘图-类别散点图和热力图
python·数据可视化
AAD555888993 天前
基于Mask R-CNN的道路路面损伤自动检测与分类研究
分类·r语言·cnn
Faker66363aaa3 天前
基于Faster R-CNN的桃黄病病害检测与分类系统实现_1
分类·r语言·cnn
小杜的生信筆記5 天前
基于R语言绘制网络图,新人选手上手
开发语言·r语言·生物信息学·组学