R包:ggheatmap热图

加载R包

r 复制代码
# devtools::install_github("XiaoLuo-boy/ggheatmap")

library(ggheatmap)
library(tidyr)

数据

r 复制代码
set.seed(123)
df <- matrix(runif(225,0,10),ncol = 15)
colnames(df) <- paste("sample",1:15,sep = "")
rownames(df) <- sapply(1:15, function(x)paste(sample(LETTERS,3,replace = F),collapse = ""))
df[1:4,1:4]


row_metaData <- data.frame(exprtype=sample(c("Up","Down"),15,replace = T),
                           genetype=sample(c("Metabolism","Immune","None"),15,replace = T))
rownames(row_metaData) <- rownames(df)
col_metaData <- data.frame(tissue=sample(c("Normal","Tumor"),15,replace = T),
                           risklevel=sample(c("High","Low"),15,replace = T))
rownames(col_metaData) <- colnames(df)
exprcol <- c("#EE0000FF","#008B45FF" )
names(exprcol) <- c("Up","Down")
genecol <- c("#EE7E30","#5D9AD3","#D0DFE6FF")
names(genecol) <- c("Metabolism","Immune","None")
tissuecol <- c("#98D352","#FF7F0E")
names(tissuecol) <- c("Normal","Tumor")
riskcol <- c("#EEA236FF","#46B8DAFF")
names(riskcol) <- c("High","Low")
col <- list(exprtype=exprcol,genetype=genecol,tissue=tissuecol,risklevel=riskcol)
text_rows <- sample(rownames(df),3)

图1

r 复制代码
p<- ggheatmap(df,cluster_rows = T,cluster_cols = T,scale = "row",
              text_show_rows = text_rows,
              cluster_num = c(3,3),
              tree_color_rows = c("#008B45FF","#631879FF","#008280FF"),
              tree_color_cols = c("#1F77B4FF","#FF7F0EFF","#2CA02CFF"),
              annotation_rows = row_metaData,
              annotation_cols = col_metaData,
              annotation_color = col
)
p

图2

r 复制代码
p%>%
  ggheatmap_theme(1:5,
                  theme =list(
                    theme(axis.text.x = element_text(angle = 90,face = "bold",size = 10),
                          axis.text.y = element_text(colour = "red",face = "bold")),
                    theme(legend.title = element_text(face = "bold")),
                    theme(legend.title = element_text(face = "bold")),
                    theme(legend.title = element_text(face = "bold")),
                    theme(legend.title = element_text(face = "bold"))
                    ))

图3

r 复制代码
ggheatmap(df,cluster_rows = T,cluster_cols = T,scale = "row",
              text_show_rows = text_rows,
              border = "grey",
              cluster_num = c(3,3),
              tree_color_rows = c("#008B45FF","#631879FF","#008280FF"),
              tree_color_cols = c("#1F77B4FF","#FF7F0EFF","#2CA02CFF"),
              annotation_rows = row_metaData,
              annotation_cols = col_metaData,
              annotation_color = col
)%>%
  ggheatmap_theme(1,theme =list(theme(axis.text.x = element_text(angle = 90,face = "bold",size = 10),
                          axis.text.y = element_text(colour = "red",face = "bold"))))

图4

r 复制代码
ggheatmap(df,cluster_rows = T,cluster_cols = T,scale = "row",
          text_show_rows = text_rows,
          border = "grey",
          shape = "circle",
          cluster_num = c(3,3),
          tree_color_rows = c("#008B45FF","#631879FF","#008280FF"),
          tree_color_cols = c("#1F77B4FF","#FF7F0EFF","#2CA02CFF"),
          annotation_rows = row_metaData,
          annotation_cols = col_metaData,
          annotation_color = col
)%>%
  ggheatmap_theme(1,theme =list(theme(axis.text.x = element_text(angle = 90,face = "bold",size = 10),
                                      axis.text.y = element_text(colour = "red",face = "bold"))))

图5

r 复制代码
ggheatmap(df,cluster_rows = T,cluster_cols = T,scale = "row",
          text_show_rows = text_rows,
          border = "grey",
          cluster_num = c(3,3),
          tree_color_rows = c("#008B45FF","#631879FF","#008280FF"),
          tree_color_cols = c("#1F77B4FF","#FF7F0EFF","#2CA02CFF"),
          annotation_rows = row_metaData,
          annotation_cols = col_metaData,
          annotation_color = col,
          text_position_rows = "left",
          text_position_cols = "top",
          tree_position_rows = "right",
          tree_position_cols = "bottom",
          annotation_position_rows = "right",
          annotation_position_cols = "bottom"
          
)%>%
  ggheatmap_theme(1,theme =list(theme(axis.text.x = element_text(angle = 90,face = "bold",size = 10),
                                      axis.text.y = element_text(colour = "red",face = "bold"))))

参考

相关推荐
李恒-聆机智能专精数采10 小时前
从零开始了解数据采集(二十七)——什么IIOT平台
大数据·人工智能·云计算·制造·数据采集·数据可视化
zm-v-1593043398611 小时前
解锁生命周期评价密码:OpenLCA、GREET 与 R 语言的融合应用
r语言·生命周期
生信大杂烩11 小时前
R语言绘图 | 渐变火山图
数据分析·r语言
HsuHeinrich1 天前
利用散点图探索宇航员特征与太空任务之间的关系
python·数据可视化
KY_chenzhao2 天前
用R语言+随机森林玩转遥感空间预测-基于R语言机器学习遥感数据处理与模型空间预测技术及实际项目案例分析
随机森林·机器学习·r语言·生态·遥感·空间预测
没有梦想的咸鱼185-1037-16632 天前
【生命周期分析(Life Cycle Assessment: LCA)】基于OpenLCA、GREET、R语言的生命周期评价方法、模型构建及典型案例应用
数据分析·r语言
前端小崔2 天前
从零开始学习three.js(15):一文详解three.js中的纹理映射UV
前端·javascript·学习·3d·webgl·数据可视化·uv
没有梦想的咸鱼185-1037-16633 天前
全球森林数据如何分析?基于R语言森林生态系统结构、功能与稳定性分析与可视化
开发语言·随机森林·数据分析·r语言
郭不耐3 天前
DeepSeek智能时空数据分析(八):NL2SQL绘制河流-轨迹缓冲区如何生成
大数据·数据分析·云计算·aigc·数据可视化
Tiger Z4 天前
R 语言科研绘图 --- 桑基图-汇总
开发语言·r语言·贴图