R包:ggheatmap热图

加载R包

r 复制代码
# devtools::install_github("XiaoLuo-boy/ggheatmap")

library(ggheatmap)
library(tidyr)

数据

r 复制代码
set.seed(123)
df <- matrix(runif(225,0,10),ncol = 15)
colnames(df) <- paste("sample",1:15,sep = "")
rownames(df) <- sapply(1:15, function(x)paste(sample(LETTERS,3,replace = F),collapse = ""))
df[1:4,1:4]


row_metaData <- data.frame(exprtype=sample(c("Up","Down"),15,replace = T),
                           genetype=sample(c("Metabolism","Immune","None"),15,replace = T))
rownames(row_metaData) <- rownames(df)
col_metaData <- data.frame(tissue=sample(c("Normal","Tumor"),15,replace = T),
                           risklevel=sample(c("High","Low"),15,replace = T))
rownames(col_metaData) <- colnames(df)
exprcol <- c("#EE0000FF","#008B45FF" )
names(exprcol) <- c("Up","Down")
genecol <- c("#EE7E30","#5D9AD3","#D0DFE6FF")
names(genecol) <- c("Metabolism","Immune","None")
tissuecol <- c("#98D352","#FF7F0E")
names(tissuecol) <- c("Normal","Tumor")
riskcol <- c("#EEA236FF","#46B8DAFF")
names(riskcol) <- c("High","Low")
col <- list(exprtype=exprcol,genetype=genecol,tissue=tissuecol,risklevel=riskcol)
text_rows <- sample(rownames(df),3)

图1

r 复制代码
p<- ggheatmap(df,cluster_rows = T,cluster_cols = T,scale = "row",
              text_show_rows = text_rows,
              cluster_num = c(3,3),
              tree_color_rows = c("#008B45FF","#631879FF","#008280FF"),
              tree_color_cols = c("#1F77B4FF","#FF7F0EFF","#2CA02CFF"),
              annotation_rows = row_metaData,
              annotation_cols = col_metaData,
              annotation_color = col
)
p

图2

r 复制代码
p%>%
  ggheatmap_theme(1:5,
                  theme =list(
                    theme(axis.text.x = element_text(angle = 90,face = "bold",size = 10),
                          axis.text.y = element_text(colour = "red",face = "bold")),
                    theme(legend.title = element_text(face = "bold")),
                    theme(legend.title = element_text(face = "bold")),
                    theme(legend.title = element_text(face = "bold")),
                    theme(legend.title = element_text(face = "bold"))
                    ))

图3

r 复制代码
ggheatmap(df,cluster_rows = T,cluster_cols = T,scale = "row",
              text_show_rows = text_rows,
              border = "grey",
              cluster_num = c(3,3),
              tree_color_rows = c("#008B45FF","#631879FF","#008280FF"),
              tree_color_cols = c("#1F77B4FF","#FF7F0EFF","#2CA02CFF"),
              annotation_rows = row_metaData,
              annotation_cols = col_metaData,
              annotation_color = col
)%>%
  ggheatmap_theme(1,theme =list(theme(axis.text.x = element_text(angle = 90,face = "bold",size = 10),
                          axis.text.y = element_text(colour = "red",face = "bold"))))

图4

r 复制代码
ggheatmap(df,cluster_rows = T,cluster_cols = T,scale = "row",
          text_show_rows = text_rows,
          border = "grey",
          shape = "circle",
          cluster_num = c(3,3),
          tree_color_rows = c("#008B45FF","#631879FF","#008280FF"),
          tree_color_cols = c("#1F77B4FF","#FF7F0EFF","#2CA02CFF"),
          annotation_rows = row_metaData,
          annotation_cols = col_metaData,
          annotation_color = col
)%>%
  ggheatmap_theme(1,theme =list(theme(axis.text.x = element_text(angle = 90,face = "bold",size = 10),
                                      axis.text.y = element_text(colour = "red",face = "bold"))))

图5

r 复制代码
ggheatmap(df,cluster_rows = T,cluster_cols = T,scale = "row",
          text_show_rows = text_rows,
          border = "grey",
          cluster_num = c(3,3),
          tree_color_rows = c("#008B45FF","#631879FF","#008280FF"),
          tree_color_cols = c("#1F77B4FF","#FF7F0EFF","#2CA02CFF"),
          annotation_rows = row_metaData,
          annotation_cols = col_metaData,
          annotation_color = col,
          text_position_rows = "left",
          text_position_cols = "top",
          tree_position_rows = "right",
          tree_position_cols = "bottom",
          annotation_position_rows = "right",
          annotation_position_cols = "bottom"
          
)%>%
  ggheatmap_theme(1,theme =list(theme(axis.text.x = element_text(angle = 90,face = "bold",size = 10),
                                      axis.text.y = element_text(colour = "red",face = "bold"))))

参考

相关推荐
源猿人2 天前
企业级文件浏览系统的Vue实现:架构设计与最佳实践
前端·javascript·数据可视化
CodeCraft Studio2 天前
【案例分享】TeeChart 助力 Softdrill 提升油气钻井数据可视化能力
信息可视化·数据可视化·teechart·油气钻井·石油勘探数据·测井数据
lssjzmn3 天前
基于Spring Boot与Micrometer的系统参数监控指南
java·spring boot·数据可视化
czhc11400756633 天前
LINUX913 shell:set ip [lindex $argv 0],\r,send_user,spawn ssh root@ip “cat “
tcp/ip·r语言·ssh
zhangfeng11333 天前
win7 R 4.4.0和RStudio1.25的版本兼容性以及系统区域设置有关 导致Plots绘图面板被禁用,但是单独页面显示
开发语言·人工智能·r语言·生物信息
zhangfeng11333 天前
在 R 语言里,`$` 只有一个作用 按名字提取“列表型”对象里的单个元素 对象 $ 名字
开发语言·windows·r语言
高-老师3 天前
R语言生物群落(生态)数据统计分析与绘图实践技术应用
开发语言·r语言·生物群落
IT研究室4 天前
大数据毕业设计选题推荐-基于大数据的健康与生活方式数据可视化分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·spark·毕业设计·源码·数据可视化·bigdata
@HNUSTer4 天前
Python数据可视化科技图表绘制系列教程(七)
python·数据可视化·科技论文·专业制图·科研图表
WangYan20224 天前
R语言:数据读取与重构、试验设计(RCB/BIB/正交/析因)、ggplot2高级绘图与统计检验(t检验/方差分析/PCA/聚类)
r语言·ggplot2·dplyr