8.sklearn-模型保存

文章目录

环境配置(必看)

Anaconda-创建虚拟环境的手把手教程相关环境配置看此篇文章,本专栏深度学习相关的版本和配置,均按照此篇文章进行安装。

头文件引用

python 复制代码
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error
import joblib

1.保存模型

代码工程

python 复制代码
将模型信息保存到my_ridge.pkl文件中
python 复制代码
def linear3():
    """
    岭回归对波士顿房价进行预测
    :return:
    """
    # 1.获取数据集
    boston = load_boston()
    print(f"特征数量: {boston.data.shape}")
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)
    # 3.标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4.预估器     alpha:正则化力度  max_iter:迭代次数
    estimator = Ridge(alpha=0.5, max_iter=10000)
    estimator.fit(x_train, y_train)

    # 保存模型
    joblib.dump(estimator, "my_ridge.pkl")

    # 5.得出模型
    print(f"岭回归权重系数为: {estimator.coef_}")
    print(f"岭回归权重为: {estimator.intercept_}")
    # 6.模型评估
    y_predict = estimator.predict(x_test)
    # print(f"预测房价: {y_predict}")
    error = mean_squared_error(y_test, y_predict)
    print(f"岭回归-均方误差: {error} \n")

运行结果

生成文件

python 复制代码
此文件中保存的是模型的信息

2.加载模型

代码工程

python 复制代码
def read_model():
    """
    加载本地模型信息
    :return:
    """
    # 1.获取数据集
    boston = load_boston()
    print(f"特征数量: {boston.data.shape}")
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)
    # 3.标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 加载模型
    estimator = joblib.load("my_ridge.pkl")
    # 得出模型
    print(f"岭回归权重系数为: {estimator.coef_}")
    print(f"岭回归权重为: {estimator.intercept_}")
    # 模型评估
    y_predict = estimator.predict(x_test)
    # print(f"预测房价: {y_predict}")
    error = mean_squared_error(y_test, y_predict)
    print(f"岭回归-均方误差: {error} \n")

运行结果

可以和上边保存模型的运行结果做对比,对比的结果是一样的,说明保存模型参数成功

相关推荐
糊涂君-Q21 分钟前
Python小白学习教程从入门到入坑------第三十一课 迭代器(语法进阶)
python·学习·程序人生·考研·职场和发展·学习方法·改行学it
天飓27 分钟前
基于OpenCV的自制Python访客识别程序
人工智能·python·opencv
檀越剑指大厂28 分钟前
开源AI大模型工作流神器Flowise本地部署与远程访问
人工智能·开源
声网31 分钟前
「人眼视觉不再是视频消费的唯一形式」丨智能编解码和 AI 视频生成专场回顾@RTE2024
人工智能·音视频
取个名字真难呐36 分钟前
矩阵乘法实现获取第i行,第j列值,矩阵大小不变
python·线性代数·矩阵·numpy
newxtc40 分钟前
【AiPPT-注册/登录安全分析报告-无验证方式导致安全隐患】
人工智能·安全·ai写作·极验·行为验证
技术仔QAQ1 小时前
【tokenization分词】WordPiece, Byte-Pair Encoding(BPE), Byte-level BPE(BBPE)的原理和代码
人工智能·python·gpt·语言模型·自然语言处理·开源·nlp
WangYaolove13141 小时前
请解释Python中的装饰器是什么?如何使用它们?
linux·数据库·python
陌上阳光1 小时前
动手学深度学习70 BERT微调
人工智能·深度学习·bert
宋发元1 小时前
如何使用正则表达式验证域名
python·mysql·正则表达式