8.sklearn-模型保存

文章目录

环境配置(必看)

Anaconda-创建虚拟环境的手把手教程相关环境配置看此篇文章,本专栏深度学习相关的版本和配置,均按照此篇文章进行安装。

头文件引用

python 复制代码
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error
import joblib

1.保存模型

代码工程

python 复制代码
将模型信息保存到my_ridge.pkl文件中
python 复制代码
def linear3():
    """
    岭回归对波士顿房价进行预测
    :return:
    """
    # 1.获取数据集
    boston = load_boston()
    print(f"特征数量: {boston.data.shape}")
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)
    # 3.标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4.预估器     alpha:正则化力度  max_iter:迭代次数
    estimator = Ridge(alpha=0.5, max_iter=10000)
    estimator.fit(x_train, y_train)

    # 保存模型
    joblib.dump(estimator, "my_ridge.pkl")

    # 5.得出模型
    print(f"岭回归权重系数为: {estimator.coef_}")
    print(f"岭回归权重为: {estimator.intercept_}")
    # 6.模型评估
    y_predict = estimator.predict(x_test)
    # print(f"预测房价: {y_predict}")
    error = mean_squared_error(y_test, y_predict)
    print(f"岭回归-均方误差: {error} \n")

运行结果

生成文件

python 复制代码
此文件中保存的是模型的信息

2.加载模型

代码工程

python 复制代码
def read_model():
    """
    加载本地模型信息
    :return:
    """
    # 1.获取数据集
    boston = load_boston()
    print(f"特征数量: {boston.data.shape}")
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)
    # 3.标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 加载模型
    estimator = joblib.load("my_ridge.pkl")
    # 得出模型
    print(f"岭回归权重系数为: {estimator.coef_}")
    print(f"岭回归权重为: {estimator.intercept_}")
    # 模型评估
    y_predict = estimator.predict(x_test)
    # print(f"预测房价: {y_predict}")
    error = mean_squared_error(y_test, y_predict)
    print(f"岭回归-均方误差: {error} \n")

运行结果

可以和上边保存模型的运行结果做对比,对比的结果是一样的,说明保存模型参数成功

相关推荐
阿里云大数据AI技术5 分钟前
OpenSearch 视频 RAG 实践
数据库·人工智能·llm
你怎么知道我是队长12 分钟前
python-input内置函数
开发语言·python
XMAIPC_Robot18 分钟前
基于ARM+FPGA的光栅尺精密位移加速度测试解决方案
arm开发·人工智能·fpga开发·自动化·边缘计算
加油吧zkf27 分钟前
YOLO目标检测数据集类别:分类与应用
人工智能·计算机视觉·目标跟踪
叹一曲当时只道是寻常29 分钟前
Python实现优雅的目录结构打印工具
python
Blossom.1181 小时前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn
天天扭码1 小时前
AI时代,前端如何处理大模型返回的多模态数据?
前端·人工智能·面试
难受啊马飞2.01 小时前
如何判断 AI 将优先自动化哪些任务?
运维·人工智能·ai·语言模型·程序员·大模型·大模型学习
顺丰同城前端技术团队1 小时前
掌握未来:构建专属领域的大模型与私有知识库——从部署到微调的全面指南
人工智能·deepseek
许泽宇的技术分享1 小时前
用.NET9+Blazor+Semantic Kernel,打造企业级AI知识库和智能体平台——AntSK深度解读
人工智能