8.sklearn-模型保存

文章目录

环境配置(必看)

Anaconda-创建虚拟环境的手把手教程相关环境配置看此篇文章,本专栏深度学习相关的版本和配置,均按照此篇文章进行安装。

头文件引用

python 复制代码
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error
import joblib

1.保存模型

代码工程

python 复制代码
将模型信息保存到my_ridge.pkl文件中
python 复制代码
def linear3():
    """
    岭回归对波士顿房价进行预测
    :return:
    """
    # 1.获取数据集
    boston = load_boston()
    print(f"特征数量: {boston.data.shape}")
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)
    # 3.标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4.预估器     alpha:正则化力度  max_iter:迭代次数
    estimator = Ridge(alpha=0.5, max_iter=10000)
    estimator.fit(x_train, y_train)

    # 保存模型
    joblib.dump(estimator, "my_ridge.pkl")

    # 5.得出模型
    print(f"岭回归权重系数为: {estimator.coef_}")
    print(f"岭回归权重为: {estimator.intercept_}")
    # 6.模型评估
    y_predict = estimator.predict(x_test)
    # print(f"预测房价: {y_predict}")
    error = mean_squared_error(y_test, y_predict)
    print(f"岭回归-均方误差: {error} \n")

运行结果

生成文件

python 复制代码
此文件中保存的是模型的信息

2.加载模型

代码工程

python 复制代码
def read_model():
    """
    加载本地模型信息
    :return:
    """
    # 1.获取数据集
    boston = load_boston()
    print(f"特征数量: {boston.data.shape}")
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)
    # 3.标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 加载模型
    estimator = joblib.load("my_ridge.pkl")
    # 得出模型
    print(f"岭回归权重系数为: {estimator.coef_}")
    print(f"岭回归权重为: {estimator.intercept_}")
    # 模型评估
    y_predict = estimator.predict(x_test)
    # print(f"预测房价: {y_predict}")
    error = mean_squared_error(y_test, y_predict)
    print(f"岭回归-均方误差: {error} \n")

运行结果

可以和上边保存模型的运行结果做对比,对比的结果是一样的,说明保存模型参数成功

相关推荐
工藤学编程1 小时前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅2 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技4 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102166 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧6 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)6 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
智航GIS6 小时前
10.4 Selenium:Web 自动化测试框架
前端·python·selenium·测试工具
没学上了6 小时前
CNNMNIST
人工智能·深度学习
jarreyer6 小时前
摄像头相关记录
python
宝贝儿好6 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人