8.sklearn-模型保存

文章目录

环境配置(必看)

Anaconda-创建虚拟环境的手把手教程相关环境配置看此篇文章,本专栏深度学习相关的版本和配置,均按照此篇文章进行安装。

头文件引用

python 复制代码
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_squared_error
import joblib

1.保存模型

代码工程

python 复制代码
将模型信息保存到my_ridge.pkl文件中
python 复制代码
def linear3():
    """
    岭回归对波士顿房价进行预测
    :return:
    """
    # 1.获取数据集
    boston = load_boston()
    print(f"特征数量: {boston.data.shape}")
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)
    # 3.标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4.预估器     alpha:正则化力度  max_iter:迭代次数
    estimator = Ridge(alpha=0.5, max_iter=10000)
    estimator.fit(x_train, y_train)

    # 保存模型
    joblib.dump(estimator, "my_ridge.pkl")

    # 5.得出模型
    print(f"岭回归权重系数为: {estimator.coef_}")
    print(f"岭回归权重为: {estimator.intercept_}")
    # 6.模型评估
    y_predict = estimator.predict(x_test)
    # print(f"预测房价: {y_predict}")
    error = mean_squared_error(y_test, y_predict)
    print(f"岭回归-均方误差: {error} \n")

运行结果

生成文件

python 复制代码
此文件中保存的是模型的信息

2.加载模型

代码工程

python 复制代码
def read_model():
    """
    加载本地模型信息
    :return:
    """
    # 1.获取数据集
    boston = load_boston()
    print(f"特征数量: {boston.data.shape}")
    # 2.划分数据集
    x_train, x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=22)
    # 3.标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 加载模型
    estimator = joblib.load("my_ridge.pkl")
    # 得出模型
    print(f"岭回归权重系数为: {estimator.coef_}")
    print(f"岭回归权重为: {estimator.intercept_}")
    # 模型评估
    y_predict = estimator.predict(x_test)
    # print(f"预测房价: {y_predict}")
    error = mean_squared_error(y_test, y_predict)
    print(f"岭回归-均方误差: {error} \n")

运行结果

可以和上边保存模型的运行结果做对比,对比的结果是一样的,说明保存模型参数成功

相关推荐
databook6 小时前
Manim实现脉冲闪烁特效
后端·python·动效
程序设计实验室6 小时前
2025年了,在 Django 之外,Python Web 框架还能怎么选?
python
飞哥数智坊8 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三8 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯9 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet11 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算11 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
用户25191624271111 小时前
Python之语言特点
python
机器之心11 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
刘立军12 小时前
使用pyHugeGraph查询HugeGraph图数据
python·graphql